Skip to main content

John P. Masterson

Abstract: We used a numerical model to investigate how a barrier island groundwater system responds to increases of up to 60 cm in sea level. We found that a sea-level rise of 20 cm leads to substantial changes in the depth of the water table and the extent and depth of saltwater intrusion, which are key determinants in the establishment, distribution and succession of vegetation assemblages and habitat suitability in barrier islands ecosystems. In our simulations, increases in water-table height in areas with a shallow depth to water (or thin vadose zone) resulted in extensive groundwater inundation of land surface and a thinning of the underlying freshwater lens. We demonstrated the interdependence of the groundwater...
thumbnail
In 2016, the United States Geological Survey (USGS) began development of a regional-scale numerical model of the Long Island aquifer system, as part of the National Water Quality Assessment (NAWQA) Program. The three-dimensional groundwater-flow model was developed to evaluate 1) responses of the hydrologic system to changes in natural and anthropogenic hydraulic stresses 2) the subsurface distribution of groundwater age, and 3) the regional-scale distribution of groundwater travel times and the source of water to fresh surface waters and coastal receiving waters. The model also provides the groundwater flow components used to define model boundaries for possible inset models used for local-scale analyses. Unconsolidated...
thumbnail
A three-dimensional, groundwater flow model was developed with the numerical code MODFLOW-NWT to represent changes in groundwater pumping and aquifer recharge in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York to North Carolina. The model was constructed using existing hydrogeologic and geospatial information to represent the aquifer system geometry, boundaries, and hydraulic properties of the 19 separate regional aquifers and confining units within the aquifer system. The model was calibrated using an inverse modeling parameter-estimation (PEST) technique to conditions from 1986 to 2008, the period for which data are most complete and reliable. The simulation period for this analysis...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.