Skip to main content

Karen M. Thorne

Abstract (from AGU 100): Periodic oscillations between El Niño and La Niña conditions in the Pacific Basin affect oceanographic and meteorological phenomena globally, with impacts on the abundance and distribution of marine species. However, El Niño effects on estuarine hydrology and tidal wetland processes have seldom been examined rigorously. We used detailed wetland elevation and local inundation data from 10 tidal wetlands located along the Pacific coast of the United States to assess changes in flooding during the 2015–2016 El Niño and to determine decadal‐scale relationships between estuarine sea‐level anomalies and Pacific Basin climate indices for this region. During the 2015–2016 El Niño all sites experienced...
Abstract (from SpringerLink): The distribution patterns of sessile organisms in coastal intertidal habitats typically exhibit vertical zonation, but little is known about variability in zonation among sites or species at larger spatial scales. Data on such heterogeneity could inform mechanistic understanding of factors affecting species distributions as well as efforts to assess and manage coastal species and habitat vulnerability to sea-level rise. Using data on the vertical distribution of common plant species at 12 tidal marshes across the US Pacific coast, we examined heterogeneity in patterns of zonation to test whether distributions varied by site, species, or latitude. Interspecific zonation was evident at...
Sea‐level rise (SLR) impacts on intertidal habitat depend on coastal topology, accretion, and constraints from surrounding development. Such habitat changes might affect species like Belding's savannah sparrows (Passerculus sandwichensis beldingi; BSSP), which live in high‐elevation salt marsh in the Southern California Bight. To predict how BSSP habitat might change under various SLR scenarios, we first constructed a suitability model by matching bird observations with elevation. We then mapped current BSSP breeding and foraging habitat at six estuarine sites by applying the elevation‐suitability model to digital elevation models. To estimate changes in digital elevation models under different SLR scenarios, we...
Abstract (from http://link.springer.com/article/10.1007%2Fs12237-013-9694-0): Salt marsh faunas are constrained by specific habitat requirements for marsh elevation relative to sea level and tidal range. As sea level rises, changes in relative elevation of the marsh plain will have differing impacts on the availability of habitat for marsh obligate species. The Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) is a 1-D model of elevation that incorporates both biological and physical processes of vertical marsh accretion. Here, we use WARMER to evaluate changes in marsh surface elevation and the impact of these elevation changes on marsh habitat for specific species of concern. Model results were compared...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.