Skip to main content

Katherine J. Knierim

thumbnail
Groundwater is a vital resource to the Mississippi embayment region of the central United States. Regional and integrated assessments of water availability that link physical flow models and water quality in principal aquifer systems provide context for the long-term availability of these water resources. An innovative approach using machine learning was employed to predict groundwater pH across drinking water aquifers of the Mississippi embayment. The region includes two principal regional aquifer systems; the Mississippi River Valley alluvial (MRVA) aquifer and the Mississippi embayment aquifer system that includes several regional aquifers and confining units. Based on the distribution of groundwater use for...
Groundwater is an often overlooked freshwater resource compared to surface water, but groundwater is used widely across the United States, especially during periods of drought. If groundwater models can successfully simulate past conditions, they may be used to evaluate potential future pumping scenarios or climate conditions, thus providing a valuable planning tool for water-resource managers. Quantifying the groundwater-use component for a groundwater model is a vital but often challenging endeavor. This dataset includes groundwater withdrawal rates modeled for the Ozark Plateaus aquifer system (Ozark system) from 1900 to 2010 by groundwater model cell (2.6 square kilometers) for five water-use divisions: agriculture...
thumbnail
Groundwater is a vital resource to the Mississippi embayment region of the central United States. Regional and integrated assessments of water availability that link physical flow models and water quality in principal aquifer systems provide context for the long-term availability of these water resources. An innovative approach using machine learning was employed to predict groundwater pH across drinking water aquifers of the Mississippi embayment. The region includes two principal regional aquifer systems; the Mississippi River Valley alluvial (MRVA) aquifer and the Mississippi embayment aquifer system that includes several regional aquifers and confining units. Based on the distribution of groundwater use for...
thumbnail
The nature of carbon (C) cycling in the vadose zone where groundwater is in contact with abundant gas-filled voids is poorly understood. The objective of this study was to trace C cycling in a karst landscape using stable-C isotopes, with emphasis on a shallow groundwater flow path through the soil, to an underlying cave, and to the spring outlet of a cave stream in the Ozark Plateaus of northwestern Arkansas. Blowing Spring Cave (BSC) occurs in the Springfield Plateau of the Ozark Plateaus. The cave passage is relatively horizontal, the entrance to BSC is a spring outlet, and no other human-sized entrances into the cave are known to occur. Soils generally are less than 2 to 3 meters thick above the cave and dominated...
thumbnail
Global demand for lithium, the primary component of lithium-ion batteries, greatly exceeds known supplies and this imbalance is expected to increase as the world transitions away from fossil fuel energy sources. The goal of this work was to calculate the total lithium mass in brines of the Reynolds oolite unit of the Smackover Formation in southern Arkansas using predicted lithium concentrations from a machine-learning model. This research was completed collaboratively between the U.S. Geological Survey and the Arkansas Department of Energy and Environment—Office of the State Geologist. The Smackover Formation is a laterally extensive petroleum and brine system in the Gulf Coast region that includes locally high...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.