Skip to main content

Kathryn Ireland

thumbnail
This dataset represents the area in the Greater Yellowstone Ecosystem prioritized for different whitebark pine(Pinus albicaulis) management activities, summarized by climate suitability zones. This data was developed for use in a landscape simulation modeling study aimed at evaluating how well alternative management strategies maintain whitebark pine populations under historical climate and future climate conditions. For the study, we developed three spatial management alternatives for whitebark pine in the Greater Yellowstone Ecosystem representing no active management, current management, and climate-informed management. These management alternatives were implemented in the simulaton model FireBGCv2 under historical...
thumbnail
This dataset represents the area in the Greater Yellowstone Ecosystem prioritized for different whitebark pine(Pinus albicaulis) management activities, summarized by land classes. This data was developed for use in a landscape simulation modeling study aimed at evaluating how well alternative management strategies maintain whitebark pine populations under historical climate and future climate conditions. For the study, we developed three spatial management alternatives for whitebark pine in the Greater Yellowstone Ecosystem representing no active management, current management, and climate-informed management. These management alternatives were implemented in the simulaton model FireBGCv2 under historical climate...
thumbnail
Existing climate change science and guidance for restoring and maintaining whitebark pine forests will be evaluated using landscape simulation modeling to inform implementation of the Greater Yellowstone Coordinating Committee (GYCC) Whitebark Pine (WBP) subcommittees WBP Strategy. We will design a no constraints management scenario based on the GYCC WBP Strategy and 2015 publication Restoring whitebark pine ecosystems in the face of climate change and incorporating the latest projections of future climate suitability for WBP and other landscape stressors (mountain pine beetles, competing species, wildland fire). We will use the landscape simulation model FireBGCv2 to simulate interactions of future climate, mountain...
Climate suitability is projected to decline for many subalpine species, raising questions about managing species under a deteriorating climate. Whitebark pine (WBP) (Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE) crystalizes the challenges that natural resource managers of many high mountain ecosystems will likely face in the coming decades. We review the system of interactions among climate, competitors, fire, bark beetles, white pine blister rust (Cronartium ribicola), and seed dispersers that make WBP especially vulnerable to climate change. A well-formulated interagency management strategy has been developed for WBP, but it has only been implemented across <1% of the species GYE range. The challenges...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.