Skip to main content

Kimberley Davis

thumbnail
This dataset includes spatial projections of the post-fire recruitment index for ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) using climate data from different time periods (1980-1989, 1990-1999, 2000-2009, 2010-2014) and a future climate scenario of a global mean increase in temperature of two degrees Celsius. The post-fire recruitment index varies from 0 to 1 and represents the proportion of the first five years following wildfire that had climate suitable for regeneration of the given species. We chose a five-year window because the majority (69%) of recruitment across all sites in the dataset used to build our recruitment models occurred within the first five post-fire years. In the...
Forests in the western US are increasingly impacted by climate change. Warm, dry conditions associated with climate change both increases fire activity in western forests and make it more difficult for forests to recover after wildfires. If forests fail to recover, they may shift to non-forest ecosystems like grasslands or shrublands. It is important to understand where fires may result in the loss of forests because forests provide a variety of ecosystem services, including carbon storage, water regulation and supply, and biodiversity. Western forests are also integral for the timber industry and valued for their recreation opportunities, which can also support local economies. The goal of this project is to identify...
Categories: Publication; Types: Citation
thumbnail
As wildfire activity surges in the western U.S., managers are increasingly challenged by decisions surrounding managing post-fire environments.Changing fire regimes and warmer,drier post-fire conditions are increasing the likelihood of post-fire vegetation transitions, for example,from forest to grassland. Given the economic and ecological importance of these ecosystems, transformation is a concern for managers, policy-makers, and the public. As rapid environmental changes occur, management aimed at maintaining historical conditions will become increasingly untenable, requiring managers to make decisions that steward vegetation toward desired or novel conditions. The Resist-Accept-Direct (RAD) framework provides...
Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which...
Categories: Publication; Types: Citation
thumbnail
Forests in the western U.S. are increasingly impacted by climate change. Warmer and drier conditions both increase fire activity in western forests and make it more difficult for forests to recover after wildfires. If forests fail to recover, they may shift to non-forest ecosystems like grasslands or shrublands. It is important to understand where fires may result in the loss of forests because forests provide a variety of ecosystem services that human communities rely on, including carbon storage, water regulation and supply, and biodiversity. Western forests are also integral for the timber industry and valued for their recreation opportunities. Anticipating future changes to forest ecosystems, particularly at...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.