Skip to main content

M. Jake Vander Zanden

Abstract (from Fisheries Management and Ecology): Lake ecosystems are shifting due to many drivers including climate change and landscape-scale habitat disturbance, diminishing their potential to support some fisheries. Walleye Sander vitreus (Mitchill) populations, which support recreational and tribal fisheries across North America, have declined in some lakes. Climate change, harvest, invasive species and concurrent increases in warm-water fishes (e.g. Centrarchidae) may have contributed to declines. To test the utility of an intensive management action to resist walleye loss, an experimental removal of ~285,000 centrarchids from a 33-ha lake over 4 years was conducted while monitoring the fish community response....
Categories: Publication; Types: Citation
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/ecy.1853/full): Predicting species responses to perturbations is a fundamental challenge in ecology. Decision makers must often identify management perturbations that are the most likely to deliver a desirable management outcome despite incomplete information on the pattern and strength of food web links. Motivated by a current fishery decline in inland lakes of the Midwestern United States, we evaluate consistency of the responses of a target species (walleye (Sander vitreus)) to press perturbations. We represented food web uncertainty with 196 plausible topological models and applied four perturbations to each one. Frequently the direction of the focal...
We classified walleye ( Sander vitreus) recruitment with 81% accuracy (recruitment success and failure predicted correctly in 84% and 78% of lake-years, respectively) using a random forest model. Models were constructed using 2779 surveys collected from 541 Wisconsin lakes between 1989 and 2013 and predictor variables related to lake morphometry, thermal habitat, land use, and fishing pressure. We selected predictors to minimize collinearity while maximizing classification accuracy and data availability. The final model classified recruitment success based on lake surface area, water temperature degree-days, shoreline development factor, and conductivity. On average, recruitment was most likely in lakes larger than...
Abstract (from Fisheries Magazine): Recreational fisheries have high economic worth, valued at US$190 billion globally. An important, but underappreciated, secondary value of recreational catch is its role as a source of food. This contribution is poorly understood due to difficulty in estimating recreational harvest at spatial scales beyond a single system, as traditionally estimated from individual creel surveys. Here, we address this gap using 28‐year creel surveys of ~300 Wisconsin inland lakes. We develop a statistical model of recreational harvest for individual lakes and then scale‐up to unsurveyed lakes (3,769 lakes; 73% of statewide lake surface area). We generate a statewide estimate of recreational lake...
Categories: Publication; Types: Citation
Abstract (from Ecosphere): Understanding invasive species spread and projecting how distributions will respond to climate change is a central task for ecologists. Typically, current and projected air temperatures are used to forecast future distributions of invasive species based on climate matching in an ecological niche modeling approach. While this approach was originally developed for terrestrial species, it has also been widely applied to aquatic species even though aquatic species do not experience air temperatures directly. In the case of lakes, species respond to lake thermal regimes, which reflect the interaction of climate and lake attributes such as depth, size, and clarity. The result is that adjacent...
Categories: Publication; Types: Citation
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.