Skip to main content

Mark A. Friedl

Monitoring vegetation phenology is critical for quantifying climate change impacts on ecosystems. We present an extensive dataset of 1783 site-years of phenological data derived from PhenoCam network imagery from 393 digital cameras, situated from tropics to tundra across a wide range of plant functional types, biomes, and climates. Most cameras are located in North America. Every half hour, cameras upload images to the PhenoCam server. Images are displayed in near-real time and provisional data products, including timeseries of the Green Chromatic Coordinate (Gcc), are made publicly available through the project web page (https://phenocam.sr.unh.edu/webcam/gallery/). Processing is conducted separately for each...
Observations of vegetation phenology at regional-to-global scales provide important information regarding seasonal variation in the fluxes of energy, carbon, and water between the biosphere and the atmosphere. Numerous algorithms have been developed to estimate phenological transition dates using time series of remotely sensed spectral vegetation indices. A key challenge, however, is that different algorithms provide inconsistent results. This study provides a comprehensive comparison of start of season (SOS) and end of season (EOS) phenological transition dates estimated from 500 m MODIS data based on two widely used sources of such data: the TIMESAT program and the MODIS Global Land Cover Dynamics (MLCD) product....
Vegetation phenology controls the seasonality of many ecosystem processes, as well as numerous biosphere-atmosphere feedbacks. Phenology is also highly sensitive to climate change and variability. Here we present a series of datasets, together consisting of almost 750 years of observations, characterizing vegetation phenology in diverse ecosystems across North America. Our data are derived from conventional, visible-wavelength, automated digital camera imagery collected through the PhenoCam network. For each archived image, we extracted RGB (red, green, blue) colour channel information, with means and other statistics calculated across a region-of-interest (ROI) delineating a specific vegetation type. From the high-frequency...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.