Skip to main content

Martin Briggs

thumbnail
Common offset ground penetrating radar (GPR) data were collected to image near surface streambed structure. These data are to be used in conjunction with fiber-optic distributed temperature sensing (FO-DTS) and electromagnetic imaging (EMI) data. The combined dataset represents point in time mapping of preferential groundwater discharge points (FO-DTS) and the bed structure that controls where these points are located (GPR, EMI).
thumbnail
The U.S. Geological Survey, in collaboration with the Department of Energy, University of Montana, Northern Arapaho Tribe, and Liverpool John Moores University, is studying the interaction of a contaminated groundwater plume enriched in uranium and other trace elements with water, sediment, and biota along a 3 km reach of the Little Wind River in central Wyoming. The source of the contaminants is from a reclaimed uranium mill site near Riverton, Wyoming. This Data Release makes available data collected from June to September, 2016 and August to September, 2017. Data collected during these time periods include: (1) radon, major-ion, and trace-element concentrations in surface-water, groundwater, and pore-water samples;...
thumbnail
In summer in Massachusetts, USA, preferential groundwater discharge zones are often colder than adjacent streambed areas that do not have substantial discharge. Therefore, discharge zones can efficiently be identified and mapped over space using heat as a tracer. This data release contains fiber-optic distributed temperature sensing (FO-DTS) data collected along the streambed interface of the main channel and tributaries of the upper Quashnet River, within approximately 1 km of Johns Pond, from June 14 to June 20, 2020. For these deployments a Salixa XT-DTS control unit (Salixa Ltd, Hertfordshire, UK) was used, and measurements were made over several day increments at 0.508 m linear resolution. Specific locations...
thumbnail
Hand-carried frequency domain electromagnetic imaging (EMI) data were collected along the Sanuit River to indicate changes in streambed water quality and/or near surface sediments. These data are to be used in conjunction with fiber-optic distributed temperature sensing (FO-DTS) and ground penetrating radar (GPR) data. The combined dataset represents point in time mapping of preferential groundwater discharge points (FO-DTS), and the bed structure that controls where these points are located (GPR, EMI).
thumbnail
Fiber-optic distributed temperature sensing (FO-DTS) cables were deployed along the sediment/water interface to map high spatial resolution temperature variations along the streambed. These variations are used to detect zones of groundwater discharge. Data are to be used in conjunction with electromagnetic imaging (EMI) and ground penetrating radar (GPR) data. The combined dataset represents point in time mapping of preferential groundwater discharge points (FO-DTS), and the bed structure that controls where these points are located (GPR, EMI).
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.