Skip to main content

Megan J. Haserodt

thumbnail
A new groundwater flow model for western Chippewa County, Wisconsin has been developed by the Wisconsin Geological and Natural History Survey (WGNHS) and the U.S. Geological Survey (USGS). An analytic element GFLOW model was constructed and calibrated to generate hydraulic boundary conditions for the perimeter of the more detailed three-dimensional MODFLOW-NWT model. This three-dimensional model uses the USGS MODFLOW-NWT finite difference code, a standalone version of MODFLOW-2005 that incorporates the Newton (NWT) solver. The model conceptualizes the hydrogeology of western Chippewa County as a six-layer system which includes several hydrostratigraphic units. The model explicitly simulates groundwater-surface-water...
thumbnail
Five MODFLOW-NWT inset models were extracted from the Lake Michigan Basin (LMB) regional model (https://pubs.usgs.gov/sir/2010/5109/). These inset models were designed to serve as a training ground for metamodels of groundwater age in glacial wells. The study areas of the inset models correspond to HUC8 basins. Two of the basins are tributary to Lake Michigan from the east, two are tributary to the lake from the west, and one is located outside the western boundary of the Lake Michigan topographic basin. The inset models inherit many of the inputs to the parent LMB model, such as its hydrostratigraphy and layering scheme, the hydraulic conductivity assigned bedrock layers, the recharge distribution, and water use...
thumbnail
Hypothetical two-dimensional, steady-state groundwater flow models of a previously published 1988 model calibration exercise were developed using the finite-difference computer code, MODFLOW-2005, to demonstrate the power of modern parameter estimation and uncertainty approaches. For this study, an initial run recreated the 1988 "truth" model. The true model was then simplified to account for information not provided the participants in the 1988 calibration exercise. Increasing sophistication was brought to bear to demonstrate how problems identified in 1988 were overcome using modern software approaches. This USGS data release contains all of the input and output to run the model simulations described in the associated...
thumbnail
A two-dimensional, steady-state groundwater flow model of the St. Louis River Basin (SLRB) was developed using the analytic-element computer code, GFLOW, to provide an understanding of the regional groundwater flow system. In analytic-element models significant streams and lakes in the model domain are represented as linesink elements. Analytic-element models, such as the SLRB regional model, can be a screening model which provides a simplified version of a hydrologic system, completed ahead of a more complex modeling effort. For this study, the regional screening model was refined to focus on extensive ditching in the central SLRB, a wetland-rich area to the south of the Iron Range. Two smaller models were developed...
thumbnail
Three groundwater flow models (KMS model, Pumping Test model, and Modified LMB model) were developed for the Kettle Moraine Springs State Fish Hatchery using the U.S. Geological Survey codes MODLOW-NWT, GWM-2005, MODFLOW-2005, and SEAWAT-2000. The KMS inset model was derived from a published USGS regional Lake Michigan Basin model, and was constructed to simulate groundwater pumping from the semi-confined Silurian bedrock aquifer. The LMB modified model is a version of the published Lake Michigan Basin model that was modified with aquifer parameters refined in an area around the hatchery. The Pumping Test model, was constructed to evaluate a pumping test conducted in the Cambrian-Ordovician aquifer system and to...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.