Skip to main content

Melissa Clark

thumbnail
Species are adapted to particular environmental conditions, but are threatened as climate change shifts habitat conditions. One way species can respond is by moving to new suitable locations, known as climate-driven range shifts. But some species can move more easily and/or more quickly than others, and some landscapes are more difficult to cross. In the upper Midwest, the movement potential of many species is reduced by broad expanses of row-crop agriculture, roads and other types of development that fragment the remaining habitat. It is important to sustain and improve connectivity across landscapes so they can continue to support biodiversity and ecosystem services like water filtration, carbon storage, pollinator...
thumbnail
This is a 30 meter grid that maps upland and wetland wildlife habitats/ecological systems for the Northeast, including all 13 states from Maine to Virginia, west to New York, Pennsylvania and West Virginia. Mapped habitat types are drawn from the Northeastern Terrestrial Habitat Classification System (NETHCS). The NETHCS is based on NatureServe’s Ecological Systems Classification, augmented with additional information from individual state wildlife classifications and other information specific to wildlife managers. A terrestrial ecological system is defined as a mosaic of plant community types that tend to co-occur within landscapes with similar ecological processes, substrates, and/or environmental gradients,...
thumbnail
To create a wall-to-wall surface of landscape permeability we used the software CIRCUITSCAPE (McRae and Shah 2009), an innovative program that models species and population movements as if they were electric current flowing through a landscape of variable resistance. Circuit modeling is conceptually aligned with the concept of landscape permeability because it recognizes that movement through a landscape is affected by a variety of impediments, and it quantifies the degree and the directional outcomes of the compounding effects. One output is a “flow” map that shows the behavior of directional flows and highlights concentration areas and pinch-points.The results can highlight locally and regionally significant places...
thumbnail
This is a 30 meter grid that maps upland and wetland wildlife habitats/ecological systems for the Northeastern US, including all 13 states from Maine to Virginia, west to New York, Pennsylvania and West Virginia, and for the Maritime provinces of Canada (Nova Scotia, Prince Edward Island, and New Brunswick) and southeastern Quebec. Mapped habitat types are drawn from the Northeastern Terrestrial Habitat Classification System (NETHCS) and from some ecological system types identifed by Canadian ecologists as being unique to Canada. The NETHCS is based on NatureServe’s Ecological Systems Classification, augmented with additional information from individual state wildlife classifications and other information specific...
thumbnail
Resilience concerns the ability of a living system to adjust to climate change, to moderate potential damages, to take advantage of opportunities, or to cope with consequences; in short, its capacity to adapt. In this project we aim to identify the most resilient examples of key geophysical settings (e.g. sand plains, granite mountains, limestone valleys, etc.) to provide conservationists with a nuanced picture of the places where conservation is most likely to succeed over centuries. The project had three parts: 1) identifying and mapping the geophysical settings, 2) developing a quantitative estimate of resilience for each setting based on landscape complexity and permeability, and 3) identifying key linkages...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.