Skip to main content

Michelle C Agne

Accelerating disturbance activity under a warming climate increases the potential for multiple disturbances to overlap and produce compound effects that erode ecosystem resilience — the capacity to experience disturbance without transitioning to an alternative state. A key concern is the potential for amplifying or attenuating feedbacks via interactions among successive, linked disturbance events. Following severe wildfires, fuel limitation is a negative feedback that may reduce the likelihood of subsequent fire. However, the duration of, and pre-fire vegetation effects on fuel limitation remain uncertain. To address this knowledge gap, we characterized fuel profiles over a 35-year post-fire chronosequence in California...
The resilience of serotinous obligate-seeding plants to fire may be compromised if increasing fire frequency curtails time available for canopy seed bank accumulation (i.e., immaturity risk), but how various drivers affect seed availability at the time of fire is poorly understood. Using field data from California closed-cone pine (Pinus attenuata and P. muricata) stands, we assess two critical demographic processes during the inter-fire period—reproductive capacity and mortality. At tree- and stand-levels, we test how these processes are affected by stand age and are mediated by biotic and abiotic factors. We found that stand age was the key driver of reproductive capacity; older stands had a greater proportion...
Categories: Publication; Types: Citation
Background Climate change is eroding forest resilience to disturbance directly through warming climate and indirectly through increasing disturbance activity. Forests characterized by stand-replacing fire regimes and dominated by serotinous species are at risk when the inter-fire period is insufficient for canopy seed bank development and climate conditions for recruitment in the post-fire growing season are unsuitable. Although both factors are critical to serotinous forest persistence, their relative importance for post-fire regeneration in serotinous forests remains poorly understood. To assess the relative effects of each factor, we established plots in severely burned knobcone pine (Pinus attenuata Lemmon)...
Categories: Publication; Types: Citation
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.