Skip to main content

Miller, Mark Eugene

thumbnail
Historically, ecosystems in the southwestern United States derived much of their nitrogen (N) from N-fixation in biological soil crusts. Today, these regions have highly reduced crust cover, and atmospheric deposition may be the dominant source of N. This study investigates the effects of increased nitrogen deposition on nitrogen uptake, photosynthesis, and growth of the two main forage grasses on the Colorado Plateau, galleta (Hilaria jamesii [Torr.] Benth.) and Indian ricegrass (Oryzopsis hymenoides, [Roemer & J.S. Schultes] Ricker ex Piper). Plots were fertilized for 2 years with 0, 10, 20, and 40 kg nitrogen ha?1 annually, up to 4� the estimated current annual deposition rate, in 2 applications per year (spring...
thumbnail
Magnetic properties of shallow (<10-cm depth), fine-grained surficial sediments contrast greatly with those of immediately underlying bedrock across much of the dry American Southwest. At 26 study sites in fine-grained (<63 ?m) surficial sediments isolated from alluvial inputs, isothermal remanent magnetization (IRM; mean of 67 samples = 6.72 � 10?3 Am2 kg?1) is more than two orders of magnitude greater than that for underlying Paleozoic and Mesozoic sedimentary rocks. This contrast is mainly caused by the presence of silt-size, titanium-bearing magnetite particles in the surficial deposits and their absence in bedrock. Because of their size, composition, and isolated location, the magnetite particles represent...
thumbnail
This study provides a fast and easy-to-apply method to estimate threshold friction velocity (TFV) of wind erosion in the field. Wind tunnel experiments and a variety of ground measurements including air gun, pocket penetrometer, torvane, and roughness chain were conducted in Moab, Utah and cross-validated in the Mojave Desert, California. Patterns between TFV and ground measurements were examined to identify the optimum method for estimating TFV. The results show that TFVs were best predicted using the air gun and penetrometer measurements in the Moab sites. This empirical method, however, systematically underestimated TFVs in the Mojave Desert sites. Further analysis showed that TFVs in the Mojave sites can be...
thumbnail
We used field studies and imaging spectroscopy to investigate the effect of grazing on vegetation cover in historically grazed and ungrazed high-mesa rangelands of the Grand Staircase?Escalante National Monument, Utah, USA. Airborne hyperspectral remote sensing data coupled with spectral mixture analysis uncovered subtle variations in the key biogeophysical properties of these rangelands: the fractional surface cover of photosynthetic vegetation (PV), nonphotosynthetic vegetation (NPV), and bare soil. The results show that a high-mesa area with long-term grazing management had significantly higher PV (26.3%), lower NPV (54.5%), and lower bare soil (17.2%) cover fractions in comparison to historically ungrazed high-mesa...
thumbnail
Biological soil crusts are a diverse soil surface community, prevalent in semiarid regions, which function as ecosystem engineers and perform numerous important ecosystem services. Loss of crusts has been implicated as a factor leading to accelerated soil erosion and other forms of land degradation. To support assessment and monitoring efforts aimed at ensuring the sustainability of rangeland ecosystems, managers require spatially explicit information concerning potential cover and composition of biological soil crusts. We sampled low disturbance sites in Grand Staircase?Escalante National Monument (Utah, USA) to determine the feasibility of modeling the potential cover and composition of biological soil crusts...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.