Skip to main content

Petra B Wood

Many eastern deciduous forest songbirds continue to experience significant population declines, which are often linked to breeding habitat requirements. Managing breeding habitat for some declining focal species in the eastern deciduous forest will entail managing for canopy heterogeneity and variable forest age classes through canopy disturbance, which are critical factors for optimizing bird species biodiversity. The prevalence of mature forests has remained stable to increasing in recent decades, but young forest conditions are lacking. In the Appalachian region, active forest management on private lands (both institutional and family-owned), in addition to public lands, are instrumental for either reversing...
Abstract (from Springer Link): Species-specific models of landscape capability (LC) can inform landscape conservation design. Landscape capability is “the ability of the landscape to provide the environment […] and the local resources […] needed for survival and reproduction […] in sufficient quantity, quality and accessibility to meet the life history requirements of individuals and local populations.” Landscape capability incorporates species’ life histories, ecologies, and distributions to model habitat for current and future landscapes and climates as a proactive strategy for conservation planning. We tested the ability of a set of LC models to explain variation in point occupancy and abundance for seven bird...
Landscape capability (LC) models are a spatial tool with potential applications in conservation planning. We used survey data to validate LC models as predictors of occurrence and abundance at broad and fine scales for American woodcock (Scolopax minor) and ruffed grouse (Bonasa umbellus). Landscape capability models were reliable predictors of occurrence but were less indicative of relative abundance at route (11.5–14.6 km) and point scales (0.5–1 km). As predictors of occurrence, LC models had high sensitivity (0.71–0.93) and were accurate (0.71–0.88) and precise (0.88 and 0.92 for woodcock and grouse, respectively). Models did not predict point-scale abundance independent of the ability to predict occurrence...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.