|
Abstract (from SpringerLink): Salt marsh-dependent species are vulnerable to impacts of sea-level rise (SLR). Site-specific differences in ecogeomorphic processes result in different SLR vulnerabilities. SLR impacts to Ridgway’s rail (Rallus obsoletus) of Southern California (SC) and San Francisco Bay (SF), U.S.A. could foreshadow SLR effects on other coastal endemic species. Salt marsh vulnerabilities to SLR were forecasted across 14 study sites using the Wetland Accretion Rate Model of Ecosystem Resilience, which accounts for changes in above and belowground marsh processes. Changes in suitable habitat for rail were projected with MaxEnt. Under a high (166 cm/100 yr) SLR scenario, current extent of suitable habitat...
|
Sea-level rise is particularly concerning for tidal wetlands that reside within an area with steep topography or are constrained by human development and alteration of sedimentation. Sediment augmentation to increase wetland elevations has been considered as a potential strategy for such areas to prevent wetland loss over the coming decades. However, there is little information on the best approaches and whether adaptive management actions can mimic natural processes to build sea-level rise resilience. In addition, the lack of information on long-term marsh characteristics, processes, and variability can hamper development of effective augmentation strategies. Here, we assess a case study in a southern California...
|
|