|
It has been well documented that restored wetlands in the Prairie Pothole Region of North America do store carbon. However, the net benefit of carbon sequestration in wetlands in terms of a reduction in global warming forcing has often been questioned because of potentially greater emissions of greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). We compared gas emissions (N2O, CH4, carbon dioxide [CO2]) and soil moisture and temperature from eight cropland and eight restored grassland wetlands in the Prairie Pothole Region from May to October, 2003, to better understand the atmospheric carbon mitigation potential of restored wetlands. Results show that carbon dioxide contributed the most (90%)...
|
Greenhouse gas (GHG) fluxes of aquatic ecosystems in the northern Great Plains of the U.S. represent a significant data gap. Consequently, a 3-year study was conducted in south-central North Dakota, USA, to provide an initial estimate of GHG fluxes from a large, shallow lake. Mean GHG fluxes were 0.02 g carbon dioxide (CO2) m−2 h−1, 0.0009 g methane (CH4) m−2 h−1, and 0.0005 mg nitrous oxide (N2O) m−2 h−1. Fluxes of CO2 and CH4 displayed temporal and spatial variability which is characteristic of aquatic ecosystems, while fluxes of N2O were consistently low throughout the study. Comparisons between results of this study and published values suggest that mean daily fluxes of CO2, CH4, and N2O from Long Lake were...
|
Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increasedmethane (CH4) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties. Results showed that the effects of land use on GHG fluxes and abiotic soil properties differed with respect to catchment zone (upland, wetland), wetland classification, geographic location, and year. Mean CH4 fluxes from the uplands...
|
The ILM community includes researchers from the USGS Northern Prairie Wildlife Research Center (NPWRC). The ScienceBase community space will be used to catalog and aggregate important information resouces for the ILM, including data derived from associated long-term projects. Web services may be used to provide cataloged information to other applications, including websites and visualization tools.
|
Wetland catchments are major ecosystems in the Prairie Pothole Region (PPR) and play an important role in greenhouse gases (GHG) flux. However, there is limited information regarding effects of land-use on GHG fluxes from these wetland systems. We examined the effects of grazing and haying, two common land-use practices in the region, on GHG fluxes from wetland catchments during 2007 and 2008. Fluxes of methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), along with soil water content and temperature, were measured along a topographic gradient every other week during the growing season near Ipswich, SD, USA. Closed, opaque chambers were used to measure fluxes of soil and plant respiration from native sod...
|
View more...
|