Skip to main content

Sara Hotchkiss

Future Distribution of Cloud Forests and Associated Species in Hawaii Final report tables
thumbnail
This study focused on sensitivity of high-elevation ecosystems in Hawai‘i to climate change. These Hawaiian ecosystems are becoming warmer and drier, and are relevant because they house many rare species, represent the last remaining stretches of uninvaded landscapes, and include wao akua – the small-statured cloud forests of great cultural significance that are the ‘realm of the gods’. Rapid climate change here presents a disproportionately high climate change impact risk. We provided models that relate current, past, and future distribution of plant species from 6000 – 7500’ feet in elevation on Haleakalā, to mean climate, extreme drought events, and soil properties. We constructed 24 models of current vegetation...
Growing evidence suggests short-duration climate events may drive community structure and composition more directly than long-term climate means, particularly at ecotones where taxa are close to their physiological limits. Here we use an empirical habitat model to evaluate the role of microclimate during a strong El Niño in structuring a tropical montane cloud forest’s upper limit and composition in Hawai‘i. We interpolate climate surfaces, derived from a high-density network of climate stations, to permanent vegetation plots. Climatic predictor variables include (1) total rainfall, (2) mean relative humidity, and (3) mean temperature representing non-El Niño periods and a strong El Niño drought. Habitat models...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.