Skip to main content

Speiran, Gary K

One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water...
Categories: Publication; Types: Citation
One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water...
Categories: Publication; Types: Citation
Elevated phosphorus concentrations commonly promote excessive growth of algae in waters nationwide. When such waters are used for public supply, the algae can plug filters during treatment and impart tastes and odors to the finished water. This increases treatment costs and results in finished water that may not be of the quality desired for public supply. Consequently, copper sulfate is routinely applied to many reservoirs to control algal growth but only is a ‘temporary fix‘ and must be reapplied at intervals that can range from more than 30 days in the winter to less than 7 days in the summer. Because copper has a maximum allowable concentration in public drinking water and can be toxic to aquatic life, water...
Categories: Publication; Types: Citation
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.