Skip to main content

Steven M Ostoja

thumbnail
This data release presents observations of riparian vegetation, topography, sediment quality, and river corridor geomorphology in four river reaches of the Lower Virgin River extending downstream 62 river kilometers (rkm) from near the town of Littlefield (AZ) and the Arizona-Nevada border at rkm 119. Methods included field observations and analysis of remotely-sensed data before (2010) and after (2011-2012) a 40-year return period flood (December 2010, at the gaging station “Virgin River near Littlefield” (USGS gage #09415000)). The data release includes four .csv files related to field observations: UTM coordinates of field transect locations; vegetation and geomorphology; species codes; and sediment quality....
thumbnail
Active channel as defined by remote sensing before (2010 and after (2011) a 40 year return period flood (December 2010) within the lower Virgin River, Nevada.
thumbnail
There is increasing and broad recognition of the importance of Indigenous and local knowledge in leading climate change adaptation. Indigenous peoples and nations are on the front lines of climate change impacts, yet they are also leading the way in many innovative adaptation actions, such as traditional or cultural burning practices - a form of low-intensity understory-burning that promotes ecosystem health and builds cultural resilience. The overarching goal of this project is to better understand and establish traditional burning as a robust adaptation strategy, based on the practice’s own merits and/or as a complementary approach to other conventional ecosystem restoration practices. Focusing on central California,...
thumbnail
Active channel as defined by remote sensing before (2010) a 40 year return period flood (December 2010) within the lower Virgin River, Nevada.
thumbnail
This publication presents data collected within meadows from samples used to assess meadow plant community responses to recreational pack stock as part of a USGS Natural Resources Preservation Project. High elevation meadows are a vital ecological component of mountain systems throughout western North America. They provide critical habitat for wildlife, supply key ecosystem services, and are favored destinations for people visiting the mountains. The biophysical characteristics of meadows are highly variable, especially related to hydrologic regimes and associated plant community types. In the semi-arid landscape of the Sierra, water availability operates at multiple scales strongly influencing meadow plant community...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.