Skip to main content

Tim Sheehan

Abstract (from PLoS ONE): To develop effective long-term strategies, natural resource managers need to account for the projected effects of climate change as well as the uncertainty inherent in those projections. Vegetation models are one important source of projected climate effects. We explore results and associated uncertainties from the MC2 Dynamic Global Vegetation Model for the Pacific Northwest west of the Cascade crest. We compare model results for vegetation cover and carbon dynamics over the period 1895–2100 assuming: 1) unlimited wildfire ignitions versus stochastic ignitions, 2) no fire, and 3) a moderate CO2 fertilization effect versus no CO2fertilization effect. Carbon stocks decline in all scenarios,...
Land managers in the Great Basin are working to maintain or restore sagebrush ecosystems as climate change exacerbates existing threats. Web applications delivering climate change and climate impacts information have the potential to assist their efforts. Although many web applications containing climate information currently exist, few have been co-produced with land managers or have incorporated information specifically focused on land managers’ needs. Through surveys and interviews, we gathered detailed feedback from federal, state, and tribal sagebrush land managers in the Great Basin on climate information web applications targeting land management. We found that a) managers are searching for weather and climate...
Dynamic global vegetation model (DGVM) projections are often put forth to aid resource managers in climate change-related decision making. However, interpreting model results and understanding their uncertainty can be difficult. Sources of uncertainty include embedded assumptions about atmospheric CO2 levels, uncertain climate projections driving DGVMs, and DGVM algorithm selection. For western Oregon and Washington, we implemented an Environmental Evaluation Modeling System (EEMS) decision support model using MC2 DGVM results to characterize biomass loss risk. MC2 results were driven by climate projections from 20 General Circulation Models (GCMs) and Earth System Models (ESMs), under Representative Concentration...
Categories: Publication; Types: Citation
Conservation Biology Institute (CBI) has been developing web applications to centralize and serve credible and usable information that allows natural resource managers, as well as the general public, to better understand the challenges posed by on-going environmental change. In particular CBI has designed a series of climate consoles that provide natural resource managers the most recent 5th Climate Model Intercomparison Program (CMIP5) climate projections, landscape intactness, and soil sensitivity for a series of reporting units over the western United States. The publically available web sites were refined based on feedback from a variety of users. In this paper, we describe each of the tools developed as open-source...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0304380015003865): Climate change adaptation and mitigation require understanding of vegetation response to climate change. Using the MC2 dynamic global vegetation model (DGVM) we simulate vegetation for the Northwest United States using results from 20 different Climate Model Intercomparison Project Phase 5 (CMIP5) models downscaled using the MACA algorithm. Results were generated for representative concentration pathways (RCPs) 4.5 and 8.5 under vegetation modeling scenarios with and without fire suppression for a total of 80 model runs for future projections. For analysis, results were aggregated by three subregions: the Western Northwest (WNW),...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.