Skip to main content

U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center

thumbnail
The LANDFIRE fuel data describe the composition and characteristics of both surface fuel and canopy fuel. Specific products include fire behavior fuel models, canopy bulk density (CBD), canopy base height (CBH), canopy cover (CC), canopy height (CH), and fuel loading models (FLMs). These data may be implemented within models to predict the behavior and effects of wildland fire. These data are useful for strategic fuel treatment prioritization and tactical assessment of fire behavior and effects. DATA SUMMARY: Thirteen typical surface fuel arrangements or "collections of fuel properties" (Anderson 1982) were described to serve as input for Rothermel's mathematical surface fire behavior and spread model (Rothermel...
thumbnail
As a low-lying island nation, the Republic of the Marshall Islands (RMI) is at the forefront of exposure to climate change impacts, including, primarily, inundation (coastal flooding). Increased water levels can stem from episodic events (storm surge, wave run-up, king tides) or from chronic conditions (long term sea-level rise). Land elevation is the primary geophysical variable that determines exposure to inundation in coastal settings. Accordingly, accurate coastal elevation data are a critical input for assessments of inundation exposure and vulnerability. Previous research has demonstrated that the quality of data used for elevation-based assessments must be well understood and applied to properly model potential...
thumbnail
The LANDFIRE fuel data describe the composition and characteristics of both surface fuel and canopy fuel. Specific products include fire behavior fuel models, canopy bulk density (CBD), canopy base height (CBH), canopy cover (CC), canopy height (CH), fuel characterization classification system (FCCS), and fuel loading models (FLMs). These data may be implemented within models to predict the behavior and effects of wildland fire. These data are useful for strategic fuel treatment prioritization and tactical assessment of fire behavior and effects.DATA SUMMARY: The LANDFIRE fuel loading model (FLM) classification system is based on unique sets of fuel characteristics that simplify the input of fuel loadings into fire...
thumbnail
Broad-scale alterations of historical fire regimes and vegetation dynamics have occurred in many landscapes in the U.S. through the combined influence of land management practices, fire exclusion, ungulate herbivory, insect and disease outbreaks, climate change, and invasion of non-native plant species. The LANDFIRE Project produces maps of historical fire regimes and vegetation conditions using the disturbance dynamics model VDDT. The LANDFIRE Project also produces maps of current vegetation and measurements of current vegetation departure from simulated historical reference conditions. These maps support fire and landscape management planning outlined in the goals of the National Fire Plan, Federal Wildland Fire...
Types: Citation; Tags: SageDAT-data
thumbnail
As a low-lying island nation, the Republic of the Marshall Islands (RMI) is at the forefront of exposure to climate change impacts, including, primarily, inundation (coastal flooding). Increased water levels can stem from episodic events (storm surge, wave run-up, king tides) or from chronic conditions (long term sea-level rise). Land elevation is the primary geophysical variable that determines exposure to inundation in coastal settings. Accordingly, accurate coastal elevation data are a critical input for assessments of inundation exposure and vulnerability. Previous research has demonstrated that the quality of data used for elevation-based assessments must be well understood and applied to properly model potential...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.