Skip to main content

Virginia Iglesias

thumbnail
The goal of this project was to inform implementation of the Greater Yellowstone Coordinating Committee (GYCC) Whitebark Pine (WBP) subcommittee’s “WBP Strategy” based on climate science and ecological forecasting. Project objectives were to: 1. Forecast ecosystem processes and WBP habitat suitability across the Greater Yellowstone Area (GYA) under alternative IPCC future scenarios; 2. Improve understanding of possible response to future climate by analyzing WBP/climate relationships in past millennia; 3. Develop WBP management alternatives; 4. Evaluate the alternatives under IPCC future scenarios in terms of WBP goals, ecosystem services, and costs of implementation; and 5. Draw recommendations for implementation...
Recent fires have fueled concerns that regional and global warming trends are leading to more extreme burning. We found compelling evidence that average fire events in regions of the United States are up to four times the size, triple the frequency, and more widespread in the 2000s than in the previous two decades. Moreover, the most extreme fires are also larger, more common, and more likely to co-occur with other extreme fires. This documented shift in burning patterns across most of the country aligns with the palpable change in fire dynamics noted by the media, public, and fire-fighting officials.
Categories: Publication; Types: Citation
It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100...
Categories: Publication; Types: Citation
The North Central Climate Science Center Paleoenvironmental Database serves as an archive of Pleistocene proxy records, metadata and derivative products (e.g., chronologies, vegetation and climate reconstructions), and provides a resource for environmental research, facilitating data viewing, synthesis and joint analysis of multiproxy datasets. As of March 2014, the database consists of 1270 paleoenvironmental records, including proxies of climate (i.e., tree-rings, borehole temperatures, isotopes, diatoms, electrical conductivity, ice cores, loess accumulation), streamflow (i.e., tree rings), fauna (i.e., fossils), vegetation (i.e., pollen, plant macrofossils) and fire (i.e., tree-scars, charcoal).
Ecological niche models predict plant responses to climate change by circumscribing species distributions within a multivariate environmental framework. Most projections based on modern bioclimatic correlations imply that high-elevation species are likely to be extirpated from their current ranges as a result of rising growing-season temperatures in the coming decades. Paleoecological data spanning the last 15,000 years from the Greater Yellowstone region describe the response of vegetation to past climate variability and suggest that white pines, a taxon of special concern in the region, have been surprisingly resilient to high summer temperature and fire activity in the past. Moreover, the fossil record suggests...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.