Skip to main content

Wenru Xu

thumbnail
Geospatial data were developed to characterize pre-fire biomass, burn severity, and biomass consumed for the Black Dragon Fire that burned in northern China in 1987. Pre-fire aboveground tree biomass (Mh/ha) raster data were derived by relating plot-level forest inventory data with pre-fire Landsat imagery from 1986 and 1987. Biomass data were generated for individual species: Dahurian larch (Larix gmelinii Rupr. Kuzen), white birch (Betula platyphylla Suk), aspen (Populus davidiana Dode and Populus suaveolens Fischer), and Mongolian Scots pine (Pinus sylvestris var. mongolica Litvinov). A raster layer of total aboveground tree biomass was also generated. Burned area was manually delineated using the normalized...
This data release provides inputs needed to run the LANDIS-II landscape change model, NECN and Base Fire extensions for the Greater Yellowstone Ecosystem (GYE), USA, and simulation results that underlie figures and analysis in the accompanying publication. We ran LANDIS-II simulations for 112 years, from 1988-2100, using interpolated weather station data for 1988-2015 and downscaled output from 5 general circulation models (GCMs) for 2016-2100. We also included a control future scenario with years drawn from interpolated weather station data from 1980-2015. Model inputs include raster maps (250 × 250 m grid cells) of climate regions and tables of monthly temperature and precipitation for each climate region. We...
The effects of changing climate and disturbance on mountain forest carbon (C) stocks vary with tree species distributions and over elevational gradients. Warming can not only increase C uptake by stimulating productivity at high elevations but also enhance C release by increasing respiration and the frequency, intensity and size of wildfires. To understand the consequences of climate change for temperate mountain forests, we simulated interactions among climate, wildfire, tree species and their combined effects on regional C stocks in forests of the Greater Yellowstone Ecosystem, USA (GYE) with the LANDISā€II landscape change model. Simulations used historical climate and future potential climate represented by downscaled...
Categories: Publication; Types: Citation
This data release provides inputs needed to run the LANDIS PRO forest landscape model and the LINKAGES 3.0 ecosystem process model for the area burned by the Black Dragon Fire in northeast China in 1987, and simulation results that underlie figures and analysis in the accompanying publication. The data release includes the fire perimeter of Great Dragon Fire; input data for LINKAGES including soils, landtype, and climate data; initial conditions of stands in the study area before the Great Dragon Fire; and maps of LANDIS PRO output for each model grid cell including total trees, total biomass (Mg/ha), and tree density (trees/ha) in two-year timesteps.
thumbnail
This data release provides inputs needed to run the LANDIS PRO forest landscape model and the LINKAGES 3.0 ecosystem process model for the temperate-boreal ecotone Great Xing’an Mountains of northeastern China, and simulation results that underlie figures and analysis in the accompanying publication. The study compared the impacts of small and large fires on vegetation dynamics. The data release includes input data for LINKAGES including soils, landtype, and climate data; initial conditions of stands in the study area for LANDIS PRO; and maps of LANDIS PRO output for each model grid cell including total trees, total biomass (Mg/ha), and tree density (trees/ha) in ten-year timesteps. Output for four climate and fire...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.