Skip to main content

Wick, Gary A

This study uses the new satellite-based Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission to retrieve tropospheric profiles of temperature and moisture over the data-sparse eastern Pacific Ocean. The COSMIC retrievals, which employ a global positioning system radio occultation technique combined with “first-guess” information from numerical weather prediction model analyses, are evaluated through the diagnosis of an intense atmospheric river (AR; i.e., a narrow plume of strong water vapor flux) that devastated the Pacific Northwest with flooding rains in early November 2006. A detailed analysis of this AR is presented first using conventional datasets and highlights the fact...
The pre-cold-frontal low-level jet within oceanic extratropical cyclones represents the lower-tropospheric component of a deeper corridor of concentrated water vapor transport in the cyclone warm sector. These corridors are referred to as atmospheric rivers (ARs) because they are narrow relative to their length scale and are responsible for most of the poleward water vapor transport at midlatitudes. This paper investigates landfalling ARs along adjacent north- and south-coast regions of western North America. Special Sensor Microwave Imager (SSM/I) satellite observations of long, narrow plumes of enhanced integrated water vapor (IWV) were used to detect ARs just offshore over the eastern Pacific from 1997 to 2005....
Experimental observations collected during meteorological field studies conducted by the National Oceanic and Atmospheric Administration near the Russian River of coastal northern California are combined with SSM/I satellite observations offshore to examine the role of landfalling atmospheric rivers in the creation of flooding. While recent studies have documented the characteristics and importance of narrow regions of strong meridional water vapor transport over the eastern Pacific Ocean (recently referred to as atmospheric rivers), this study describes their impact when they strike the U.S. West Coast. A detailed case study is presented, along with an assessment of all 7 floods on the Russian River since the experimental...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.