Skip to main content

William K. Smith

Abstract (from ScienceDirect): Dryland ecosystems play an important role in determining how precipitation anomalies affect terrestrial carbon fluxes at regional to global scales. Thus, to understand how climate change may affect the global carbon cycle, we must also be able to understand and model its effects on dryland vegetation. Dynamic Global Vegetation Models (DGVMs) are an important tool for modeling ecosystem dynamics, but they often struggle to reproduce seasonal patterns of plant productivity. Because the phenological niche of many plant species is linked to both total productivity and competitive interactions with other plants, errors in how process-based models represent phenology hinder our ability to...
Drylands account for approximately 40% of the global land surface and play a dominant role in the trend and variability of terrestrial carbon uptake and storage. Gross ecosystem photosynthesis – termed gross primary productivity (GPP) – is a critical driver of terrestrial carbon uptake and remains challenging to be observed directly. Currently, vegetation indices that largely capture changes in greenness are the most commonly used datasets in satellite-based GPP modeling. However, there remains significant uncertainty in the spatiotemporal relationship between greenness indices and GPP, especially for relatively heterogeneous dryland ecosystems. In this paper, we compared vegetation greenness indices from PhenoCam...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.