Skip to main content

Zhang, X. C.

Impacts of climate change on natural resources need to be evaluated in a range of geography and agricultural systems for better conservation planning. The objectives of this paper were to evaluate spatial sensitivity of predicted soil loss and runoff to climate change at large scales, and to simulate the “regional” impacts of climate change on soil erosion on the southern Great Plains. Relative climate changes at three spatial scales between 1950 to 99, and 2070 to 99, projected using HadCM3 under the A2a, B2a, and GGa1 emission scenarios, were used to generate changed climates for Chickasha, Oklahoma. The Water Erosion Prediction Project (WEPP) model was run for each climate scenario at three spatial scales with...
Spatial and temporal mismatches between coarse resolution projections of global climate models (GCMs) and fine resolution data requirements of ecosystems models are the major obstacles for assessing the site-specific climatic impacts of climate change on natural resources and ecosystems. The objectives of this study were to: (i) develop a simple method for statistically downscaling GCM monthly output at the native GCM grid scale to station-scale using transfer functions, and (ii) further demonstrate the site-specific impact assessment of climate change on water resources, soil erosion, and crop production at Kingfisher, OK, US using the water erosion prediction project (WEPP) model. Monthly precipitation and temperature...
The potential for global climate changes to increase the risk of soil erosion is clear, but the actual damage is not. The objectives of this study were to evaluate the potential impacts of climate change on soil erosion, surface runoff, and wheat productivity in central Oklahoma. Monthly projections were used from the Hadley Centre's general circulation model, HadCM3, using scenarios A2a, B2a, and GGa1 for the periods of 1950-1999 and 2070-2099. Projected changes in monthly precipitation and temperature distributions between the two periods were incorporated into daily weather series by means of a stochastic weather generator (CLIGEN) with its input parameters adjusted to each scenario. The Water Erosion Prediction...
Trends and uncertainty of the climate change impacts on hydrology, soil erosion, and wheat production during 2010–2039 at El Reno in central Oklahoma, USA, were evaluated for 12 climate change scenarios projected by four GCMs (CCSR/NIES, CGCM2, CSIRO-Mk2, and HadCM3) under three emissions scenarios (A2, B2, and GGa). Compared with the present climate, overall t-tests (n = 12) show that it is almost certain that mean precipitation will decline by some 6% (>98.5% probability), daily precipitation variance increase by 12% (>99%), and maximum and minimum temperature increase by 1.46 and 1.26 °C (>99%), respectively. Compared with the present climate under the same tillage systems, it is very likely (>90%) that evapotranpiration...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.