Arthropod dynamics on sagebrush (Artemisia tridentata): effects of plant chemistry and avian predation
Citation
Neil S Cobb, Rex G Cates, John A Wiens, Richard A Redak, and John T Rotenberry, Arthropod dynamics on sagebrush (Artemisia tridentata): effects of plant chemistry and avian predation: .
Summary
We conducted a field experiment to assess interrelationships between leaf-tissue secondary chemistry, avian predation, and the abundance and diversity of arthropods occurring on sagebrush (Artemisia tridentata) in central Oregon. Arthropods were removed from individual shrubs, some of which were then caged to exclude birds. Secondary chemistry and arthropods were sampled at intervals up to 56 wk following the defaunation/caging treatment. Recovery rates differed among arthropod taxa and functional groups. Several sap-sucking homopterans and hemipterans reached control levels within 2-4 wk of the treatment, whereas abundances of parasitoids and predators recovered to match control numbers only 6 wk after defaunation. Abundances of several [...]
Summary
We conducted a field experiment to assess interrelationships between leaf-tissue secondary chemistry, avian predation, and the abundance and diversity of arthropods occurring on sagebrush (Artemisia tridentata) in central Oregon. Arthropods were removed from individual shrubs, some of which were then caged to exclude birds. Secondary chemistry and arthropods were sampled at intervals up to 56 wk following the defaunation/caging treatment. Recovery rates differed among arthropod taxa and functional groups. Several sap-sucking homopterans and hemipterans reached control levels within 2-4 wk of the treatment, whereas abundances of parasitoids and predators recovered to match control numbers only 6 wk after defaunation. Abundances of several herbivorous leaf-chewing taxa (primarily lepidopteran larvae) remained significantly depressed even 56 wk after the treatment. Fungivores (oribatid mites) reached greater abundances on defaunated than on control shrubs by the end of the experiment. There were also significant changes in the concentrations or frequency of occurrence of several chemical compounds following the defaunation treatment. Several hydrocarbons, sesquiterpenes, and monoterpenes that were present in most shrubs exhibited sharply reduced concentrations in leaf tissues within 4 wk of the treatment, whereas some alcohols and ketones (linalool, borneol, thujone), which occurred at relatively low frequencies among control plants, increased dramatically in their frequencies of occurrence following arthropod removal. Both changes persisted for the duration of the experiment. We found several significant associations between the abundance or occurrence of arthropod taxa or groups and concentrations or frequencies of secondary compounds, but these were most prevalent among the leaf-chewing lepidopterans. We suggest that the shrubs responded to the removal of herbivorous, leaf-chewing arthropods by altering chemical allocation patterns; the changes in chemistry persisted for over a year because recolonization of the defaunated plants by these herbivores was slow. Effects of the caging treatment were much less obvious. The recovery of the diversity of arthropods known to constitute prey for birds in this system was slower on shrubs protected from avian predation than on exposed shrubs, but a year after defaunation diversity had increased to higher levels on the protected shrubs. Few arthropod taxa or functional groups differed in abundance or frequency of occurrence between caged and uncaged shrubs, although fungivores (which are not eaten by birds) increased to levels on protected shrubs that were nearly twice those on the uncaged controls by the end of the experiment. Between-shrub variance in the abundance and diversity of bird-prey taxa was greater among exposed than protected shrubs, possibly reflecting the effects of area-restricted searching by the birds. There were no differences in leaf-tissue secondary chemistry between caged and uncaged shrubs.
Published in Ecological Monographs, volume 31, issue 3, on pages 299 - 322, in 1991.