Hydraulic Survey and Scour Assessment of Bridge 524, Tanana River at Big Delta, Alaska
Dates
Year
2007
Citation
Heinrichs, Thomas A., Langley, Dustin E., Burrows, Robert L., and Conaway, Jeffrey S., 2007, Hydraulic Survey and Scour Assessment of Bridge 524, Tanana River at Big Delta, Alaska: U.S. Geological Survey, v. Scientific Investigations Report 2006–5282, p. 67-67.
Summary
Bathymetric and hydraulic data were collected August 26-28, 1996, on the Tanana River at Big Delta, Alaska, at the Richardson Highway bridge and Trans-Alaska Pipeline crossing. Erosion along the right (north) bank of the river between the bridge and the pipeline crossing prompted the data collection. A water-surface profile hydraulic model for the 100- and 500-year recurrence-interval floods was developed using surveyed information. The Delta River enters the Tanana immediately downstream of the highway bridge, causing backwater that extends upstream of the bridge. Four scenarios were considered to simulate the influence of the backwater on flow through the bridge. Contraction and pier scour were computed from model results. Computed [...]
Summary
Bathymetric and hydraulic data were collected August 26-28, 1996, on the Tanana River at Big Delta, Alaska, at the Richardson Highway bridge and Trans-Alaska Pipeline crossing. Erosion along the right (north) bank of the river between the bridge and the pipeline crossing prompted the data collection. A water-surface profile hydraulic model for the 100- and 500-year recurrence-interval floods was developed using surveyed information. The Delta River enters the Tanana immediately downstream of the highway bridge, causing backwater that extends upstream of the bridge. Four scenarios were considered to simulate the influence of the backwater on flow through the bridge. Contraction and pier scour were computed from model results. Computed values of pier scour were large, but the scour during a flood may actually be less because of mitigating factors. No bank erosion was observed at the time of the survey, a low-flow period. Erosion is likely to occur during intermediate or high flows, but the actual erosion processes are unknown at this time.