California shorelines and shoreline change data, 1998-2016
Dates
Publication Date
2020-12-31
Citation
Barnard, P.L., Smith, S.A., and Foxgrover, A.C., 2020, California shorelines and shoreline change data, 1998-2016: U.S. Geological Survey data release, https://doi.org/10.5066/P91QSGXF
Summary
This data release contains mean high water (MHW) shorelines along the coast of California for the years 1998/2002, 2015, and 2016, extracted from Light Detection and Ranging (LiDAR) digital elevation models using ArcGIS. The Digital Shoreline Analysis System (DSAS) was used to calculate net shoreline movement (NSM) between the pre-El Niño (2015) and post-El Niño (2016) shorelines, as a proxy for sandy shoreline change throughout the El Niño winter season. For a longer-term perspective of background shoreline behavior, end-point rates (EPR) of change were also calculated between the 1998/2002 and the 2016 shorelines.
Summary
This data release contains mean high water (MHW) shorelines along the coast of California for the years 1998/2002, 2015, and 2016, extracted from Light Detection and Ranging (LiDAR) digital elevation models using ArcGIS. The Digital Shoreline Analysis System (DSAS) was used to calculate net shoreline movement (NSM) between the pre-El Niño (2015) and post-El Niño (2016) shorelines, as a proxy for sandy shoreline change throughout the El Niño winter season. For a longer-term perspective of background shoreline behavior, end-point rates (EPR) of change were also calculated between the 1998/2002 and the 2016 shorelines.
This work is one portion of ongoing coastal monitoring efforts for California and the western United States. These data provide an estimate of past shoreline positions and shoreline change throughout California, with the goal of understanding how shorelines change over time and in response to El Niño events. The data are intended for policy makers, resource managers, science researchers, students, and the general public. These data can be used with geographic information systems or other software to identify and assess possible areas of vulnerability. These data are not intended to be used for navigation.