Nearshore bathymetry of the Columbia River littoral cell, Washington and Oregon, 2022
Dates
Publication Date
2019-06-10
Start Date
2022-07-26
End Date
2022-08-23
Release Date
2024-01-26
Citation
Stevens, A.W., Weiner, H.M., Wood, J.M., Ruggiero, P., Kaminsky, G.M., and Gelfenbaum G.R., 2019, Beach topography and nearshore bathymetry of the Columbia River littoral cell, Washington and Oregon (ver. 4.0, January 2024): U.S. Geological Survey data release, https://doi.org/10.5066/P9W15JX8.
Summary
This portion of the USGS data release presents bathymetry data collected during surveys performed in the Columbia River littoral cell and mouth of the Columbia River, Washington and Oregon, in 2022 (USGS Field Activity Number 2022-641-FA). Bathymetry data were collected using four personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The sonar systems consisted of either an Odom Echotrac CV-100 or CEE Hydrosystems Ceescope single-beam echosounder and 200 kHz transducer with a 9-degree beam angle. Raw acoustic backscatter returns were digitized by the echosounder with a vertical resolution of 1.25 cm. Depths from the echosounders were computed using sound velocity [...]
Summary
This portion of the USGS data release presents bathymetry data collected during surveys performed in the Columbia River littoral cell and mouth of the Columbia River, Washington and Oregon, in 2022 (USGS Field Activity Number 2022-641-FA). Bathymetry data were collected using four personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The sonar systems consisted of either an Odom Echotrac CV-100 or CEE Hydrosystems Ceescope single-beam echosounder and 200 kHz transducer with a 9-degree beam angle. Raw acoustic backscatter returns were digitized by the echosounder with a vertical resolution of 1.25 cm. Depths from the echosounders were computed using sound velocity profiles measured using a YSI CastAway CTD during the survey. Positioning of the survey vessels was determined at 5 to 10 Hz using either Trimble R9s or Trimble BD990 GNSS receivers. Output from the GNSS receivers and sonar systems were combined in real time on the PWC by a computer running HYPACK hydrographic survey software. Navigation information was displayed on a video monitor, allowing PWC operators to navigate along survey lines at speeds of 2 to 3 m/s.
Survey-grade positions of the PWCs were achieved with a single-base station and differential post-processing. Positioning data from the GNSS receivers were post-processed using Waypoint Grafnav to apply differential corrections from a GNSS base station with known horizontal and vertical coordinates relative to the North American Datum of 1983. Orthometric elevations relative to the NAVD88 vertical datum were computed using National Geodetic Survey Geoid12a offsets. Bathymetric data were merged with post-processed positioning data and spurious soundings were removed using a custom Graphical User Interface (GUI) programmed with the computer program MATLAB. The average estimated vertical uncertainty of the bathymetric measurements is 10 cm. The final point data from the PWCs are provided in a comma-separated text file and are projected in cartesian coordinates using the Washington State Plane South, meters coordinate system.
Click on title to download individual files attached to this item.
crlc22_bathy_metadata.xml Original FGDC Metadata
View
24.93 KB
application/fgdc+xml
crlc22_bathy.csv
316.94 MB
text/csv
Purpose
Data were obtained to document interannual changes in shoreline position and coastal morphology. These data are intended for science researchers, students, policy makers, and the general public. These data can be used with geographic information systems or other software to identify topographic and shallow-water bathymetric features.