Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:24015} (X)

61 results (19ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data set describes the predicted daily climate (temperature and rainfall) for low, mid, and high-elevations on Mona Loa, Island of Hawaii from 2098-2100. Climate predictions are based on 3 alternative climate scenarios (RCP 4.5, A1B, and RCP 8.5) - see Liao et al. 2015 for more details and climate references. The predicted daily risk of susceptible Hawaiian honeycreepers are based on the daily climate data, mosquito abundance and other factors. Also see Samuel et al. 2011 The dynamics, transmission, and population impacts of avian malaria in native Hawaiian birds: a modeling approach. Ecological Applications 21:2960-2973 for description of the epidemiological model used for avian malaria risk predictions.
thumbnail
Hawaiʹi’s most widespread native tree, ʹōhiʹa lehua (Metrosideros polymorpha), has been dying across large areas of Hawaiʹi Island mainly due to two fungal pathogens (Ceratocystis lukuohia and Ceratocystis huliohia) that cause a disease collectively known as Rapid ʹŌhiʹa Death (ROD). Here we examine patterns of positive detections of C. lukuohia as it has been linked to the larger mortality events across Hawaiʹi Island. Our analysis compares the environmental range of C. lukuohia and its spread over time through the known climatic range and distribution of ʹōhiʹa. This data set is a georeferenced raster file, containing the projected potential presence of C.lukuohia across the main Hawaiian Islands using climatic...
thumbnail
Fog has been demonstrated to support plant growth, survival and ecosystem maintenance spanning rainfall and elevation gradients across the world. Persistent fog and strong winds on high mountain slopes in Hawaiʻi create a unique ecological environment. We collected stem and basal diameter measurements of three native plant species at Nakula Natural Area Reserve, Maui, from 2016-2019 and numerous environmental variables to examine how rain, fog and soil moisture influence plant water deficit and growth.
thumbnail
Landscape-scale conservation of threatened and endangered species is often challenged by multiple, sometimes conflicting, land uses. In Hawaiʻi, efforts to conserve native forests have come into conflict with objectives to sustain non-native game mammals, such as feral pigs, goats, and deer, for subsistence and sport hunting. Maintaining stable or increasing game populations represents one of the greatest obstacles to the recovery of Hawaii’s 425 threatened and endangered plant species. Many endemic Hawaiian species have declined and become endangered as a result of herbivorous non-native game mammals. Meanwhile, other environmental changes, including the spread of invasive grasses and changing precipitation patterns...
The Hawaiian Islands are home to a variety of native species that have been subject to numerous threats including development of habitat for human use, predation by introduced herbivores, and competition with invasive plant species. In addition to these threats global climate change is expected to increase temperature and alter patterns of precipitation in Hawaii. This project models the relative vulnerability of native plant species to the effects of climate change, in order to assist resource managers in effectively allocating limited resources to efficiently preserve and protect current and future habitat for native plants. We modeled vulnerability by creating an expert system – a network model linking biological...
thumbnail
This dataset was developed to model habitat suitability for two ungulate species on the island of Lanai. This includes raster data derived from WorldView-2 data to create a normalized difference vegetation index (NDVI). This index, in addition to other datasets, was used to develop habitat suitability models for Axis deer and mouflon sheep. Datasets and indices derived for use in modeling efforts, as well as suitability models, are included within this data release.
Broadly, recovery of threatened and endangered species requires specific management actions by natural resource managers at a fine scale. We used a systematic conservation planning framework to outline conservation goals across multiple land-uses, including native habitat protection and identifying endangered species-specific recovery areas while minimizing intrusion on existing hunting areas on the island of Lanai. We used spatial prioritization tools to generate multiple scenarios where both conservation and hunting areas (deemed zones for analysis purposes) were delineated to meet land-use goals. These delineated areas will help land managers to minimize conflicts between uses for populations of non-native game...
thumbnail
Fog has been demonstrated to support plant growth, survival and ecosystem maintenance spanning rainfall and elevation gradients across the world. Persistent fog and strong winds on high mountain slopes in Hawaiʻi create a unique ecological environment. We collected stem diameter measurements of three native plant species at Nakula Natural Area Reserve, Maui, from 2016-2019 and numerous environmental variables to examine how rain, fog, soil moisture, and associated variables influence plant water deficit and growth. We also collected seedling growth and survival data within plots where grass was removed, and control plots (no grass removal), to assess if and how grass removal influenced seedling growth and soil moisture.
Gridded bioclimatic variables representing yearly, seasonal, and monthly means and extremes in temperature and precipitation have been widely used for ecological modeling purposes and in broader climate change impact and biogeographical studies. As a result of their utility, numerous sets of bioclimatic variables have been developed on a global scale (e.g., WorldClim) but rarely represent the finer regional scale pattern of climate in Hawai'i. Recognizing the value of having such regionally downscaled products, we integrated more detailed projections from recent climate models developed for Hawai'i with current climatological datasets to generate updated regionally defined bioclimatic variables. We derived updated...
Categories: Publication; Types: Citation
thumbnail
This single raster dataset has five different bands, one band for each of the five Bioclim models computed, based on different subsets of the available CRB occurrence data including: 1) all available global data (excluding Hawaii); 2) only occurrences within CRB's native range; 3) only occurrences in the species non-native range (excluding Hawaii); 4) only occurrences in the species insular non-native range (excluding Hawaii).; and 5) only occurrences collected in Hawaii by the CRB response team. Detailed methods for each model are described in the associated xml metadata file.
thumbnail
We created a comprehensive estimate of potential distribution for a subset of 17 ecosystem modifying invasive plants (EMIPs) in Hawaiʻi. This work uses methods that integrate a wide set of data sources including agency and citizen science data, but perhaps more importantly, the integration of regional and global distribution information for these species. We built three sets of ensemble species distribution models (SDMs) for each species. We first built global and regional ensemble distribution models for each species. Then, to create a comprehensive estimate of potential invasive species distribution for our study species in Hawaiʻi, we built nested regional models that integrate our global and regional ensemble...
Given the potential effect of invasive plants and animals to water fluxes through forests, the invasive-driven degradation of native ecosystems is a topic of great concern for many downstream land and water managers. The infiltration rate determines the partitioning between runoff and infiltration into soil in Hawaiian forests and beyond. Thus, to explore the ecohydrological effects of plant and animal invasion in mesic and wet forests in Hawaii, we measured soil infiltration capacity in multiple fenced (i.e., ungulate-free)/unfenced and native/invaded forest sites along moisture and substrate age gradients across the islands of Hawai‘i and Kaua‘i. We also characterized forest composition and structure and soil...
Categories: Publication; Types: Citation
thumbnail
One of the determinants of runoff is the occurrence of excess rainfall events where rainfall rates exceed the infiltration capacity of soils. To help understand runoff risks, we calculated the probability of excess rainfall events across the Hawaiian landscape by comparing the probability distributions of projected rainfall frequency and land cover-specific infiltration capacity. We characterized soil infiltration capacity based on different land cover types (bare soil, grasses, and woody vegetation) and compared them to the frequency of large rainfall events under current and future (pseudo-global warming) climate scenarios. This simple analysis allowed us to map the potential risk of excess rainfall across the...
thumbnail
Global downscaled projections are now some of the most widely used climate datasets in the world, however, they are rarely examined for representativeness of local climate or the plausibility of their projected changes. Here we show steps to improve the utility of two such global datasets (CHELSA and WorldClim2) to provide credible climate scenarios for regional climate change impact studies. Our approach is based on three steps: 1) Using a standardized baseline period, comparing available global downscaled projections with regional observation-based datasets and regional downscaled datasets (if available); 2) bias correcting projections using observation-based data; and 3) creating ensembles to make use of the...
thumbnail
Global downscaled projections are now some of the most widely used climate datasets in the world, however, they are rarely examined for representativeness of local climate or the plausibility of their projected changes. Here we show steps to improve the utility of two such global datasets (CHELSA and WorldClim2) to provide credible climate scenarios for regional climate change impact studies. Our approach is based on three steps: 1) Using a standardized baseline period, comparing available global downscaled projections with regional observation-based datasets and regional downscaled datasets (if available); 2) bias correcting projections using observation-based data; and 3) creating ensembles to make use of the...
thumbnail
We created a comprehensive estimate of potential distribution for a subset of 17 ecosystem modifying invasive plants (EMIPs) in Hawaiʻi. This work uses methods that integrate a wide set of data sources including agency and citizen science data, but perhaps more importantly, the integration of regional and global distribution information for these species. We developed transferable and comparable general species distribution models (SDMs) at global and regional scales based on a minimum set of biologically plausible predictors. We built three sets of ensemble species distribution models (SDMs) for each species. We first built global and regional ensemble distribution models for each species. Then, to create a comprehensive...
thumbnail
Non-native grass removal as part of a larger restoration strategy has been demonstrated to assist in natural recruitment of important native plant species on the island of Maui. Seedling size class data were collected to assess whether there were differences in Dodonaea viscosa seedling recruitment and survival between grass-control plots and those dominated by non-native grass in the Nakula Natural Area Reserve on Maui Island, and between grass-controlled sites.
thumbnail
Global downscaled projections are now some of the most widely used climate datasets in the world, however, they are rarely examined for representativeness of local climate or the plausibility of their projected changes. Here we apply steps to improve the utility of two such global datasets (CHELSA and WorldClim2) to provide credible climate scenarios for climate change impact studies in Hawaii. Our approach is based on three steps: 1) Using a standardized baseline period, comparing available global downscaled projections with regional observation-based datasets and regional downscaled datasets (if available); 2) bias correcting projections using observation-based data; and 3) creating ensembles to make use of the...
thumbnail
This dataset was developed to model habitat suitability for two ungulate species on the island of Lanai. This includes raster data derived from WorldView-2 data to create a bare ground index. This index, in addition to other datasets, was used to create the habitat suitability models. Datasets and indices derived for use in modeling efforts, as well as suitability models, are included within this data release.
Broadly, recovery of threatened and endangered species requires specific management actions by natural resource managers at a fine scale. We used a systematic conservation planning framework to outline conservation goals across multiple land-uses, including native habitat protection and identifying endangered species-specific recovery areas while minimizing intrusion on existing hunting areas on the island of Lanai. We used spatial prioritization tools to generate multiple scenarios where both conservation and hunting areas (deemed zones for analysis purposes) were delineated to meet land-use goals. These delineated areas will help land managers to minimize conflicts between uses for populations of non-native game...


map background search result map search result map Predicted climate and avian malaria risk to Hawaiian honeycreepers on the Island of Hawaii from 2098-2100 Managing Non-native Game Mammals to Reduce Future Conflicts with Native Plant Conservation in Hawai‘i Modeled potential presence of Ceratocystis luhuohia across Hawaiian Islands Bare Ground Index Data for the Hawaiian Island of Lanai, Derived from 2011 WV2 Imagery Normalized Difference Vegetation Index (NDVI) Data for the Hawaiian Island of Lanai, Derived from 2011 WV2 imagery Species List and Federally-listed Status of Native Plant Species Used in Spatial Prioritization for Lanai Island, 2021 Target Lists for Lanai Island Spatial Prioritization of Native Plant Habitat and Hunting Areas, 2021 Plant growth measurements across three native species in a cloud-affected restoration site at Nakula, Maui, 2016-2019 Dodonaea viscosa seedling count data within a cloud-affected restoration site at Nakula, Maui, 2016-2018 Field site locations of dendrometer deployment and seedling plots in a cloud-affected restoration site at Nakula, Maui, 2016-2019 Hawaiian Islands downscaled climate projections for baseline (1983-2012), mid- (2040-2059), and late-century (2060-2079) scenarios Downscaled CHELSA projections for the Hawaiian Islands under four representative concentration pathways (RCPs; 2.6, 4.5, 6.0, and 8.5) for mid- (2040-2059), and late-century (2060-2079) scenarios Downscaled WorldClim2 projections for the Hawaiian Islands under four representative concentration pathways (RCPs; 2.6, 4.5, 6.0, and 8.5) for mid- (2040-2059), and late-century (2060-2079) scenarios CRB climate compatibility maps based on global and local species occurrences Hawaiian Islands excess rainfall conditions under current (2002-2012) and future (2090-2099) climate scenarios Hawaiian Islands habitat suitability models for highly invasive plants based on global and regional data for baseline climate scenario (1990-2009) Hawaiian Islands nested habitat suitability models for highly invasive plants for baseline climate scenario (1990-2009) Plant growth measurements across three native species in a cloud-affected restoration site at Nakula, Maui, 2016-2019 Dodonaea viscosa seedling count data within a cloud-affected restoration site at Nakula, Maui, 2016-2018 Field site locations of dendrometer deployment and seedling plots in a cloud-affected restoration site at Nakula, Maui, 2016-2019 Bare Ground Index Data for the Hawaiian Island of Lanai, Derived from 2011 WV2 Imagery Normalized Difference Vegetation Index (NDVI) Data for the Hawaiian Island of Lanai, Derived from 2011 WV2 imagery Species List and Federally-listed Status of Native Plant Species Used in Spatial Prioritization for Lanai Island, 2021 Target Lists for Lanai Island Spatial Prioritization of Native Plant Habitat and Hunting Areas, 2021 Managing Non-native Game Mammals to Reduce Future Conflicts with Native Plant Conservation in Hawai‘i Predicted climate and avian malaria risk to Hawaiian honeycreepers on the Island of Hawaii from 2098-2100 Hawaiian Islands habitat suitability models for highly invasive plants based on global and regional data for baseline climate scenario (1990-2009) Hawaiian Islands nested habitat suitability models for highly invasive plants for baseline climate scenario (1990-2009) Hawaiian Islands excess rainfall conditions under current (2002-2012) and future (2090-2099) climate scenarios Modeled potential presence of Ceratocystis luhuohia across Hawaiian Islands CRB climate compatibility maps based on global and local species occurrences Hawaiian Islands downscaled climate projections for baseline (1983-2012), mid- (2040-2059), and late-century (2060-2079) scenarios Downscaled CHELSA projections for the Hawaiian Islands under four representative concentration pathways (RCPs; 2.6, 4.5, 6.0, and 8.5) for mid- (2040-2059), and late-century (2060-2079) scenarios Downscaled WorldClim2 projections for the Hawaiian Islands under four representative concentration pathways (RCPs; 2.6, 4.5, 6.0, and 8.5) for mid- (2040-2059), and late-century (2060-2079) scenarios