Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:54961} (X)

11 results (45ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/1752-1688.12304/abstract): The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases...
thumbnail
These data can be used to replicate the application of MWBMglacier as described in two journal articles: 1) Enhancement of a parsimonious water balance model to simulate surface hydrology in a glacierized watershed (in review), and 2) Hydrologic regime changes in a high-latitude glacierized watershed under future climate conditions (doi:10.3390/w10020128). These simulations provide results from historical and 12 future general circulation model scenarios for the period 1949-2099 to determine the potential effects of climate change on the hydrology and water quality of a snow-dominated mountainous environment. In addition to the inputs and outputs, this Data Release includes summaries of the input and output data...
thumbnail
The Precipitation-Runoff Modeling System (PRMS) was used to produce simulations of streamflow for seven watersheds in eastern and central Montana for a baseline period (water years 1982-1999) and three future periods (water years 2021-2038, 2046–2063, and 2071-2038). The seven areas that were modeled are the O'Fallon, Redwater, Little Dry, Middle Musselshell, Judith, Cottonwood Creek, and Belt watersheds. Appendix 2 is provided as supplementary information to accompany the forthcoming journal article Potential Effects of Climate Change on Streamflow for Seven Watersheds in Eastern and Central Montana. These data document the monthly streamflow (in cubic meters per second) at the downstream end of each stream...
HRUs, streams, and DEM for Chipola basin.
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2015JF003789/abstract): A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while maintaining model usability. PRMSglacier is validated on two basins in Alaska, Wolverine, and Gulkana Glacier basin, which have been studied since 1966 and have a substantial amount of data with which to test model performance over a long period of time covering a wide range...
thumbnail
The Precipitation-Runoff Modeling System (PRMS) was used to produce simulations of streamflow for seven watersheds in eastern and central Montana for a baseline period (water years 1982-1999) and three future periods (water years 2021-2038, 2046-2063, and 2071-2038). The seven areas that were modeled are the O'Fallon, Redwater, Little Dry, Middle Musselshell, Judith, Cottonwood Creek, and Belt watersheds. These data document the sources, values and ranges of selected input parameters used for PRMS simulations of streamflow for the O'Fallon, Redwater, Little Dry, Middle Musselshell, Judith, Cottonwood Creek, and Belt watersheds in eastern and central Montana. This appendix is provided as part of the supplementary...
thumbnail
REQUIRED: A brief narrative summary of the data set.
thumbnail
This data release contains the D-score (version 0.1) daily streamflow performance benchmark results for the National Hydrologic Model Infrastructure application of the Precipitation-Runoff Modeling System (NHM) version 1 "byObs" calibration with Muskingum routing computed at streamflow benchmark locations (version 1) as defined by Foks and others (2022). Model error was determined by evaluating predicted daily mean streamflow versus observed daily mean streamflow. Using those errors, the D-score performance benchmark computes the mean squared logarithmic error (MSLE), then decomposes the overall MSLE into orthogonal components such as bias, distribution, and sequence (Hodson and others, 2021). For easier interpretation,...


    map background search result map search result map Streams (ap2c_v_arc) HRUs (ap2ctp2) aoi aoi Appendix 1. Sources, values, and ranges for selected Precipitation-Runoff Modeling System parameters for the seven study watersheds in eastern and central Montana. Appendix 2. Simulated monthly mean streamflows for the seven study watersheds in eastern and central Montana, for the baseline period (WY 1982 – 1999) and future periods (WYs 2021 – 2038, 2046 – 2063 and 2071 – 2088) for the three General Circulation Models used in the regional climate model. Supporting data for two MWBMglacier applications to the Copper River basin in Alaska Daily streamflow performance benchmark defined by D-score (v0.1) for the National Hydrologic Model application of the Precipitation-Runoff Modeling System (v1 byObs Muskingum) at benchmark streamflow locations Streams (ap2c_v_arc) HRUs (ap2ctp2) aoi aoi Supporting data for two MWBMglacier applications to the Copper River basin in Alaska Appendix 1. Sources, values, and ranges for selected Precipitation-Runoff Modeling System parameters for the seven study watersheds in eastern and central Montana. Appendix 2. Simulated monthly mean streamflows for the seven study watersheds in eastern and central Montana, for the baseline period (WY 1982 – 1999) and future periods (WYs 2021 – 2038, 2046 – 2063 and 2071 – 2088) for the three General Circulation Models used in the regional climate model. Daily streamflow performance benchmark defined by D-score (v0.1) for the National Hydrologic Model application of the Precipitation-Runoff Modeling System (v1 byObs Muskingum) at benchmark streamflow locations