Skip to main content
Advanced Search

Filters: Contacts: Graham Sexstone (X)

3 results (63ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
In the Western U.S., approximately 65% of the water supply comes from forested regions with most of the water that feeds local rivers coming from snowmelt that originates in mountain forests. The Rio Grande headwaters (I.e. the primary water generating region of the Rio Grande river) is experiencing large changes to the landscape primarily from forest fires and bark beetle infestations. Already, 85% of the coniferous forests in this region have been affected by the bark beetle, and projections indicate greater changes will occur as temperatures increase. In this area, most of the precipitation falls as snow in the winter, reaches a maximum depth in the late spring, and melts away due to warmer temperatures by early...
thumbnail
The Rio Grande River is a critical source of freshwater for 13 million people in Colorado, Texas, New Mexico, and Mexico. More than half of the Rio Grande’s streamflow originates as snowmelt in Colorado’s mountains, meaning that changes in the amount of snowmelt can impact the water supply for communities along the entire river. Snowmelt runoff is therefore an important component of water supply outlooks for the region, which are used by a variety of stakeholders to anticipate water availability in the springtime. It is critical that these water supply outlooks be as accurate as possible. Errors can cost states millions of dollars due to mis-allocation of water and lost agricultural productivity. There is a perception...
Snow and watershed models typically do not account for forest structure and shading; therefore, they display substantial uncertainty when attempting to account for forest change or when comparing hydrological response between forests with varying characteristics. This study collected snow water equivalent (SWE) measurements in a snow-dominated forest in Colorado, the United States, with variable canopy structure. The SWE measurements were integrated with 1 m Lidar derived canopy structure metrics and incoming solar radiation to create empirical SWE offset equations for four canopy structure groupings (forest gaps, south-facing forest edges, north-facing forest edges, and the interior forest) that varied in size...
Categories: Publication; Types: Citation


    map background search result map search result map Developing Tools for Improved Water Supply Forecasting in the Rio Grande Headwaters Estimating the Future Effects of Forest Disturbance on Snow Water Resources in a Changing Environment Developing Tools for Improved Water Supply Forecasting in the Rio Grande Headwaters Estimating the Future Effects of Forest Disturbance on Snow Water Resources in a Changing Environment