Skip to main content
Advanced Search

Filters: Contacts: Hollibaugh, J T (X)

4 results (115ms)   

View Results as: JSON ATOM CSV
Schoepp-Cothenet et al. bring a welcome conceptual debate to the question of which came first in the course of planetary biological evolution, arsenite [As(III)] oxidation or dissimilatory arsenate [As(V)] reduction. However, we disagree with their reasoning and stand by our original conclusion.
Categories: Publication; Types: Citation
Phylogenetic analysis indicates that microbial arsenic metabolism is ancient and probably extends back to the primordial Earth. In microbial biofilms growing on the rock surfaces of anoxic brine pools fed by hot springs containing arsenite and sulfide at high concentrations, we discovered light-dependent oxidation of arsenite [As(III)] to arsenate [As(V)] occurring under anoxic conditions. The communities were composed primarily of Ectothiorhodospira-like purple bacteria or Oscillatoria-like cyanobacteria. A pure culture of a photosynthetic bacterium grew as a photoautotroph when As(III) was used as the sole photosynthetic electron donor. The strain contained genes encoding a putative As(V) reductase but no detectable...
Categories: Publication; Types: Citation