Skip to main content
Advanced Search

Filters: Contacts: Lucas Fortini (X)

65 results (66ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Hawaiʹi’s most widespread native tree, ʹōhiʹa lehua (Metrosideros polymorpha), has been dying across large areas of Hawaiʹi Island mainly due to two fungal pathogens (Ceratocystis lukuohia and Ceratocystis huliohia) that cause a disease collectively known as Rapid ʹŌhiʹa Death (ROD). Here we examine patterns of positive detections of C. lukuohia as it has been linked to the larger mortality events across Hawaiʹi Island. Our analysis compares the environmental range of C. lukuohia and its spread over time through the known climatic range and distribution of ʹōhiʹa. This data set is a georeferenced raster file, containing the projected potential presence of C.lukuohia across the main Hawaiian Islands using climatic...
thumbnail
This data set describes the predicted daily climate (temperature and rainfall) for low, mid, and high-elevations on Mona Loa, Island of Hawaii from 2098-2100. Climate predictions are based on 3 alternative climate scenarios (RCP 4.5, A1B, and RCP 8.5) - see Liao et al. 2015 for more details and climate references. The predicted daily risk of susceptible Hawaiian honeycreepers are based on the daily climate data, mosquito abundance and other factors. Also see Samuel et al. 2011 The dynamics, transmission, and population impacts of avian malaria in native Hawaiian birds: a modeling approach. Ecological Applications 21:2960-2973 for description of the epidemiological model used for avian malaria risk predictions.
The Hawaiian Islands are home to a variety of native species that have been subject to numerous threats including development of habitat for human use, predation by introduced herbivores, and competition with invasive plant species. In addition to these threats global climate change is expected to increase temperature and alter patterns of precipitation in Hawaii. This project models the relative vulnerability of native plant species to the effects of climate change, in order to assist resource managers in effectively allocating limited resources to efficiently preserve and protect current and future habitat for native plants. We modeled vulnerability by creating an expert system – a network model linking biological...
Current and year 2100 (SRES A1B) climate envelopes for all native species datasets for “A landscape-based assessment of climate change vulnerability for native Hawaiian plants”.
Categories: Data; Tags: Data, LCC Science Catalog, completed
thumbnail
Hawaiʻi is considered a worldwide biodiversity hotspot, with nearly 90 percent of its native plants found nowhere else in the world. However, about half of these native plants are imperiled by threats including human development, non-native species, and climate change. Through this project, scientists modeled the relative vulnerability of over 1,000 native plant species to the effects of climate change. A panel of experts in Hawaiian plant species assisted with the development of the model and verified its results. From the model, researchers were able to develop a vulnerability score for each plant species and identify categories of species with high, medium, and low vulnerability to climate change. This information...
thumbnail
Landscape-scale conservation of threatened and endangered species is often challenged by multiple, sometimes conflicting, land uses. In Hawaiʻi, efforts to conserve native forests have come into conflict with objectives to sustain non-native game mammals, such as feral pigs, goats, and deer, for subsistence and sport hunting. Maintaining stable or increasing game populations represents one of the greatest obstacles to the recovery of Hawaii’s 425 threatened and endangered plant species. Many endemic Hawaiian species have declined and become endangered as a result of herbivorous non-native game mammals. Meanwhile, other environmental changes, including the spread of invasive grasses and changing precipitation patterns...
thumbnail
This dataset was developed to model habitat suitability for two ungulate species on the island of Lanai. This includes raster data derived from WorldView-2 data to create a normalized difference vegetation index (NDVI). This index, in addition to other datasets, was used to develop habitat suitability models for Axis deer and mouflon sheep. Datasets and indices derived for use in modeling efforts, as well as suitability models, are included within this data release.
Identifying opportunities for long-lasting habitat conservation and restoration in Hawaii’s shifting climate GeoTiffs
thumbnail
Haleakalā National Park (HNP) and the surrounding landscape spans many different land cover types, some of which are undergoing vegetation changes that can reduce the amount of water that infiltrates into soil. Decreased soil infiltration can lead to the erosion of terrestrial habitats, increases in the amount of sediment entering aquatic habitats, and flooding of downstream areas as runoff increases after storms. Currently, HNP managers are attempting to control runoff and erosion to avoid loss and damage within park boundaries and parks located downstream. Managers in HNP have expressed a need for information on current and future runoff and erosion risk to help prioritize management within the park and other...
Climate velocity is a concept derived from the intersection between ecology and climate change. It attempts to summarize the rate of climate change on a spatial scale as a movement rate (usually in units of kilometer per year) that a species would need to maintain to remain in its current climatological niche in the face of climate change. We now have downscaled climate models for the main Hawaiian Islands. In conjunction with the rainfall atlas of contemporary climate we have the information to calculate climate velocity for Hawaii, providing a useful index of the rate of climate change for conservation and resource managers. The goal of this project was to produce climate velocity maps for the seven main Hawaiian...
Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria’s life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models...
A landscape-based assessment of climate change vulnerability for all native Hawaiian plants Handout
A landscape-based assessment of climate change vulnerability for all native Hawaiian plants table with all vulnerability scores and associated data for all species
As the impacts of global climate change on species are increasingly evident, there is a clear need to adapt conservation efforts worldwide. Species vulnerability assessments (VAs) are increasingly used to summarize all relevant information to determine a species’ potential vulnerability to climate change and are frequently the first step in informing climate adaptation efforts. VAs commonly integrate multiple sources of information by utilizing a framework that distinguishes factors relevant to species exposure, sensitivity, and adaptive capacity. However, this framework was originally developed for human systems, and its use to evaluate species vulnerability has serious practical and theoretical limitations. By...
For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN) Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21%...
· Anticipating potential shifts in plant communities has been a major challenge in climate-change ecology. In the State of Hawaii, where conservation efforts tend to be habitat focused, the lack of projections of vegetation shifts under future climate is a major knowledge gap for developing management actions for climate-change mitigation and adaptation.· As a first approximation, we have modeled potential shifts of terrestrial vegetation across the Hawaiian landscape between now and the end of this century. Our approach relies on modeling the relation between current climate and the distribution of broad climatically determined moisture zones (MZs; for example, wet, mesic, and dry areas) that form the...
A landscape-based assessment of climate change vulnerability for native Hawaiian plants Final report
Categories: Data; Tags: LCC Science Catalog, Report, completed


map background search result map search result map Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants Predicted climate and avian malaria risk to Hawaiian honeycreepers on the Island of Hawaii from 2098-2100 Identifying the Risk of Runoff and Erosion in Hawaiʻi’s National Parks Managing Non-native Game Mammals to Reduce Future Conflicts with Native Plant Conservation in Hawai‘i Modeled potential presence of Ceratocystis luhuohia across Hawaiian Islands Normalized Difference Vegetation Index (NDVI) Data for the Hawaiian Island of Lanai, Derived from 2011 WV2 imagery Normalized Difference Vegetation Index (NDVI) Data for the Hawaiian Island of Lanai, Derived from 2011 WV2 imagery Managing Non-native Game Mammals to Reduce Future Conflicts with Native Plant Conservation in Hawai‘i Predicted climate and avian malaria risk to Hawaiian honeycreepers on the Island of Hawaii from 2098-2100 Establishing Climate Change Vulnerability Rankings for Hawaiian Native Plants Modeled potential presence of Ceratocystis luhuohia across Hawaiian Islands Identifying the Risk of Runoff and Erosion in Hawaiʻi’s National Parks