Skip to main content
Advanced Search

Filters: Contacts: Michael P Chenaille (X)

88 results (43ms)   

View Results as: JSON ATOM CSV
thumbnail
This raster dataset depicts percent canopy cover derived from 1-m conifer classifications when aggregated to 30-m cells. Conifer features were classified from 2010, 2012, and 2013 NAIP Digital Ortho Quarter Quads (DOQQ) using the Feature Analyst 5.0 extension for ArcGIS 10.1. Tiles were organized and grouped by Nevada Department of Wildlife Population Management Unit (PMU) locations, plus a 10 km area beyond the PMU extent. Analysts visually identified conifers in the imagery using false color infrared settings and digitized multiple trees per tile as training locations for classification. After performing hierarchical learning and clutter removal with Feature Analyst to remove non-conifer features on output shapefiles,...
thumbnail
These tables serve as input data for hierarchical models investigating interactions between raven density and Greater Sage-grouse nest success. Observations were recorded over an 11 year time period, spanning from 2009 through 2019. The model is run in JAGS via R, the code is publicly available via the U.S. Geological Survey's GitLab (O'Neil et al. 2023). We recommend not making any changes or edits to the tables unless the user is experienced with hierarchical modeling. References: O'Neil, S.T., Coates, P.S., Webster, S.C., Brussee, B.E., Dettenmaier, S.J., Tull, J.C., Jackson, P.J., Casazza, M.L., and Espinosa, S.P., 2023, Code for a hierarchical model of raven densities linked with sage-grouse nest survival...
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California. HSIs were calculated for spring (mid-March to June), summer (July to mid-October), and winter (November to March) sage-grouse seasons, and then multiplied together to create this composite dataset.
thumbnail
Ranked habitat classes for sage-grouse brood-rearing productivity at each 90 m pixel. Habitat classes represent areas where high brood selection and high brood survival intersected, whereas the lowest ranks represent areas where high brood habitat selection intersected with the low brood survival. Hierarchical models of brood selection and survival were fit to landscape covariates within a Bayesian modeling framework in Nevada and California from 2009 - 2017 to develop spatially explicit information about brood habitat selection and survival.
thumbnail
We used a hierarchical Bayesian modeling framework to estimate resource selection functions and survival for early and late brood-rearing stages of sage-grouse in relation to a broad suite of habitat characteristics evaluated at multiple spatial scales within the Great Basin from 2009 to 2019. Sage-grouse selected for greater perennial grass cover, higher relative elevations, and areas closer to springs and wet meadows during both early and late brood-rearing. Terrain characteristics, including heat load and aspect, were important in survival models, as was variation in shrub height. We also found strong evidence for higher survival for both early and late broods within previously burned areas, but survival within...
thumbnail
Predictions of raven occurrence in the absence of anthropogenic environmental effects. Raven point counts were related to landscape covariates using Bayesian hierarchical occupancy models and the means of the posterior distributions for relevant effects were used to generate the predictions.
thumbnail
Greater sage-grouse (Centrocercus urophasianus; hereinafter sage-grouse) is a sagebrush obligate species and widely considered an indicator species for sagebrush ecosystems and other sagebrush-dependent species (Hanser and Knick, 2011; Prochazka and others, 2023). Sagebrush ecosystems are threatened by a wide range of disturbances and anthropogenic factors, including climate change, severe drought, altered wildfire regimes, expansion of invasive species, and anthropogenic development. Collectively, these threats have led to reduced ecological integrity and sage-grouse habitat quality within the sagebrush biome (Doherty and others, 2022). Steady and long-term declines in sage-grouse populations have led to large-scale...
thumbnail
Average and standard deviation of annual predicted common raven (Corvus corax) density (ravens per square kilometer) derived from random forest models given field site unit-specific estimates of raven density that were obtained from hierarchical distance sampling models at 43 field site units within the Great Basin region, USA. Fifteen landscape-level predictors summarizing climate, vegetation, topography and anthropogenic footprint were used to predict average raven density at each unit. These data support the following publication: Coates, P.S., O'Neil, S.T., Brussee, B.E., Ricca, M.A., Jackson, P.J., Dinkins, J.B., Howe, K.B., Moser, A.M., Foster, L.J. and Delehanty, D.J., 2020. Broad-scale impacts of an invasive...
thumbnail
Predicted common raven (Corvus corax) impacts within greater sage-grouse (Centrocercus urophasianus) concentration areas across the Great Basin, USA, 2007–2016. Predicted impacts were based on a raven density of great than or equal to 0.40 (ravens per square kilometer) which corresponded to below-average survival rates of sage-grouse nests. These data support the following publication: Coates, P.S., O'Neil, S.T., Brussee, B.E., Ricca, M.A., Jackson, P.J., Dinkins, J.B., Howe, K.B., Moser, A.M., Foster, L.J. and Delehanty, D.J., 2020. Broad-scale impacts of an invasive native predator on a sensitive native prey species within the shifting avian community of the North American Great Basin. Biological Conservation,...
thumbnail
We evaluated the expected success of habitat recovery in priority areas under 3 different restoration scenarios: passive, planting, and seeding. Passive means no human intervention following a fire disturbance. Under a planting scenario, field technicians methodically plant young sagebrush saplings at the burned site. The seeding scenario involves distributing large amounts of sagebrush seeds throughout the affected area.
thumbnail
We examined nest survival of Greater Sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse) in relation to fine-scale habitat patterns that influenced nest site selection, using data from nests of telemetered females at 17 sites across 6 years in Nevada and northeastern California, USA. Importantly, sites spanned mesic and xeric average precipitation conditions and concomitant vegetation community structure across cold desert ecosystems of the North American Great Basin. Vegetative cover immediately surrounding sage-grouse nests was important for both nest site selection and nest survival, but responses varied between mesic and xeric sites. For example, while taller perennial grass was selected at xeric...
thumbnail
Escalated wildfire activity within the western U.S. has widespread societal impacts and long-term consequences for the imperiled sagebrush (Artemisia spp.) biome. Shifts from historical fire regimes and the interplay between frequent disturbance and invasive annual grasses may initiate permanent state transitions as wildfire frequency outpaces sagebrush communities’ innate capacity to recover. Therefore, wildfire management is at the core of conservation plans for sagebrush ecosystems, especially critical habitat for species of conservation concern such as the greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse). Fuel breaks help facilitate wildfire suppression by modifying behavior through fuels...
thumbnail
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during the winter season (November to March), and is a surrogate for habitat conditions during periods of cold and snow.
thumbnail
We evaluated brood-rearing habitat selection and brood survival of greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse) in Long Valley, California, an area where the water rights are primarily owned by the city of Los Angeles and water is used locally to irrigate for livestock. This area thus represents a unique balance between the needs of wildlife and people that could increasingly define future water management. In this study, sage-grouse broods moved closer to the edge of mesic areas and used more interior areas during the late brood-rearing period, selecting for greener areas after 1 July. Mesic areas were particularly important during dry years, with broods using areas farther interior than...
thumbnail
These data represent predicted common raven (Corvus corax) density (ravens/square-km) derived from random forest models given field site unit-specific estimates of raven density that were obtained from hierarchical distance sampling models at 43 field site units within the Great Basin region, USA. Fifteen landscape-level predictors summarizing climate, vegetation, topography and anthropogenic footprint were used to predict average raven density at each unit. A raven density of greater than or equal to 0.40 ravens/square-km corresponds to below-average survival rates of sage-grouse (Centrocercus urophasianus) nests. We mapped areas which exceed this threshold within sage-grouse concentration areas to determine where...
thumbnail
Map of cumulative 38-day nest survival predicted from a Bayesian hierarchical shared frailty model of sage-grouse nest fates. The midpoint of coefficient conditional posterior distributions of 38-day nest survival were used for prediction at each 30 meter pixel across the landscape.
thumbnail
These data represent habitat selection of greater sage-grouse at the 50 day mark of their brood rearing process. Sage-grouse and their broods were monitored on their own individual time lines, so one group's 50th day may not necessarily be the same as any other bird's 50th day.
thumbnail
We evaluated nest site selection and nest survival both before and after a fire disturbance occurred. We then combined those surfaces to determine the areas which were most heavily impacted by the fire.


map background search result map search result map Percent canopy cover of conifers within Nevada and northeastern California sage-grouse habitat (2017) Raven study site locations in the Great Basin, derived from survey locations 2007 - 2016 Predictions of raven occurrence in the absence of anthropogenic environmental effects in the Great Basin, 2007-2016 (Fig. 4B) Prediction of raven occurrence intersected with high impact areas for sage-grouse populations in the Great Basin, 2007-2016 (Fig. 5A) Composite Habitat Suitability Index Raster Dataset Winter Season Habitat Categories Shapefile Data Maps of Predicted Raven Density and Areas of Potential Impact to Nesting Sage-grouse within Sagebrush Ecosystems of the North American Great Basin Raven Impacts within Greater Sage-grouse Concentration Areas within the Great Basin Region of the United States 2007 - 2016 Average and Standard Deviation of Annual Predicted Raven Density in the Great Basin, Western U.S. Greater Sage-grouse Nest Survival, Nevada and California 2019 Spatially-Explicit Predictive Maps of Greater Sage-Grouse Brood Selection Integrated with Brood Survival in Nevada and Northeastern California, USA Habitat Suitability Index for Greater Sage-Grouse 50 Days into the Brood Rearing Life Stage, Nevada and California Ranked Habitat Classes for Sage-Grouse Brood-Rearing Productivity, Nevada and California Sagebrush Restoration Under Passive, Planting, and Seeding Scenarios Following Fire Disturbance in the Virginia Mountains, Nevada (2018) Post-Fire Change in Greater Sage-Grouse Nest Selection and Survival in the Virginia Mountains, Nevada (2018) Selection and Survival of Greater Sage-Grouse Broods in Mesic Areas of Long Valley, California (2003 - 2018) Microhabitat Characteristics Influencing Sage-Grouse Nest Site Selection and Survival, Nevada and California (2012-2017) Predictive Maps of Fuel Break Effectiveness by Treatment Type and Underlying Resilience to Disturbance and Resistance to Invasion Across the Western U.S. Raven Observations near Greater Sage-Grouse Nests in the Great Basin and Bi-State Regions of the Western United States (2009 - 2019) Greater Sage-Grouse Habitat Selection, Survival, Abundance, and Space-Use in the Bi-State Distinct Population Segment of California and Nevada Selection and Survival of Greater Sage-Grouse Broods in Mesic Areas of Long Valley, California (2003 - 2018) Post-Fire Change in Greater Sage-Grouse Nest Selection and Survival in the Virginia Mountains, Nevada (2018) Sagebrush Restoration Under Passive, Planting, and Seeding Scenarios Following Fire Disturbance in the Virginia Mountains, Nevada (2018) Composite Habitat Suitability Index Raster Dataset Winter Season Habitat Categories Shapefile Greater Sage-Grouse Habitat Selection, Survival, Abundance, and Space-Use in the Bi-State Distinct Population Segment of California and Nevada Greater Sage-grouse Nest Survival, Nevada and California 2019 Percent canopy cover of conifers within Nevada and northeastern California sage-grouse habitat (2017) Spatially-Explicit Predictive Maps of Greater Sage-Grouse Brood Selection Integrated with Brood Survival in Nevada and Northeastern California, USA Habitat Suitability Index for Greater Sage-Grouse 50 Days into the Brood Rearing Life Stage, Nevada and California Ranked Habitat Classes for Sage-Grouse Brood-Rearing Productivity, Nevada and California Microhabitat Characteristics Influencing Sage-Grouse Nest Site Selection and Survival, Nevada and California (2012-2017) Raven Observations near Greater Sage-Grouse Nests in the Great Basin and Bi-State Regions of the Western United States (2009 - 2019) Raven study site locations in the Great Basin, derived from survey locations 2007 - 2016 Raven Impacts within Greater Sage-grouse Concentration Areas within the Great Basin Region of the United States 2007 - 2016 Prediction of raven occurrence intersected with high impact areas for sage-grouse populations in the Great Basin, 2007-2016 (Fig. 5A) Data Maps of Predicted Raven Density and Areas of Potential Impact to Nesting Sage-grouse within Sagebrush Ecosystems of the North American Great Basin Average and Standard Deviation of Annual Predicted Raven Density in the Great Basin, Western U.S. Predictions of raven occurrence in the absence of anthropogenic environmental effects in the Great Basin, 2007-2016 (Fig. 4B) Predictive Maps of Fuel Break Effectiveness by Treatment Type and Underlying Resilience to Disturbance and Resistance to Invasion Across the Western U.S.