Filters: Contacts: Robert M. Scheller (X)
3 results (34ms)
Filters
Date Range
Extensions Types Contacts Categories Tag Types Tag Schemes
|
Abstract (from http://link.springer.com/article/10.1007%2Fs10980-015-0160-1): Content Changing aspen distribution in response to climate change and fire is a major focus of biodiversity conservation, yet little is known about the potential response of aspen to these two driving forces along topoclimatic gradients. Objective This study is set to evaluate how aspen distribution might shift in response to different climate-fire scenarios in a semi-arid montane landscape, and quantify the influence of fire regime along topoclimatic gradients. Methods We used a novel integration of a forest landscape succession and disturbance model (LANDIS-II) with a fine-scale climatic water deficit approach to simulate dynamics of...
Categories: Publication;
Types: Citation;
Tags: Climatic water deficit,
Drought, Fire and Extreme Weather,
Fire,
Fire disturbance,
Gradient analysis,
Maintaining and enhancing landscape connectivity reduces biodiversity declines due to habitat fragmentation. Uncertainty remains, however, about the effectiveness of conservation for enhancing connectivity for multiple species on dynamic landscapes, especially over long time horizons. We forecasted landscape connectivity from 2020 to 2100 under four common conservation land-acquisition strategies: acquiring the lowest cost land, acquiring land clustered around already established conservation areas, acquiring land with high geodiversity characteristics, and acquiring land opportunistically. We used graph theoretic metrics to quantify landscape connectivity across these four strategies, evaluating connectivity for...
Categories: Publication;
Types: Citation
The effects of changing climate and disturbance on mountain forest carbon (C) stocks vary with tree species distributions and over elevational gradients. Warming can not only increase C uptake by stimulating productivity at high elevations but also enhance C release by increasing respiration and the frequency, intensity and size of wildfires. To understand the consequences of climate change for temperate mountain forests, we simulated interactions among climate, wildfire, tree species and their combined effects on regional C stocks in forests of the Greater Yellowstone Ecosystem, USA (GYE) with the LANDISāII landscape change model. Simulations used historical climate and future potential climate represented by downscaled...
Categories: Publication;
Types: Citation
|