Skip to main content
Advanced Search

Filters: Categories: Data (X) > partyWithName: Kevin J Buffington (X)

30 results (7ms)   

Filters
Contacts (Less)
View Results as: JSON ATOM CSV
thumbnail
This data set contains decomposition rates for litter of Salicornia pacifica, Distichlis spicata, and Deschampsia cespitosa buried at 7 tidal marsh sites in 2015. Sediment organic matter values were collected at a subset of sites. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
This data table contains mean decomposition rates and mean carbon:nitrogen ratios for different litter types buried in 7 marshes during 2015. Note that C:N data are repeated for low and high marsh areas at each site in the table. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
Accurate elevation data in coastal wetlands is crucial for planning for sea-level rise. Elevation surveys were conducted across southwest Florida wetlands to provide ground validation of LiDAR as well as target long-term monitoring stations (surface elevation tables). Surveys were conducted in June 2021 across Ding Darling National Wildlife Refuge, Clam Bay, Rookery Bay National Estuarine Research Reserve, and Ten Thousand Islands National Wildlife Refuge. A combination of post-processed kinematic GPS and differential levelling survey techniques were employed, depending on the canopy cover.
thumbnail
This data table contains results for the 2014 mesocosm tests of inundation effects on decomposition. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
This data release is comprised of tidal marsh biomass data and spatial predictions of peak biomass and Julian day of peak biomass using data from the Landsat archive. Aboveground biomass dry weight of mixed-species plots (25x50 cm) at a tidal marsh in Willapa Bay, Washington were used to establish a relationship between biomass and tasseled cap greeness (TCG). The julian day of annual peak greenness and the value of annual peak greenness for 32 years at Bandon National Wildlife Refuge (NWR), Grays Harbor NWR, and Nisqually NWR was calculated by fitting a Gaussian function to the TCG values for a given year. The value of each 30 meter pixel is the Julian day of maximum predicted TCG or the maximum predicted TCG....
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for tidal marsh areas around San Francisco Bay using the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). Survey-grade GPS survey data (6614 points), NAIP-derived Normalized Difference Vegetation Index, and original 1 m lidar DEM from 2010 were used to generate a model of predicted bias across tidal marsh areas. The predicted bias was then subtracted from the original lidar DEM and merged with the NOAA...
thumbnail
Elevation projections from the WARMER-Mangroves model for J N. "Ding" Darling National Wildlife Refuge across a range of sea-level rise scenarios (53, 115, and 183 cm by 2100). The model was calibrated using dated soil cores sampled from the basin hydrologic zone. These data support the following publication: Buffington, K.J., Thorne, K.M., Krauss, K.W., Conrad, J.K., Drexler, J.Z., and Zhu, Z., in-review. Vulnerability of Sanibel Island’s mangrove resources to sea-level rise (Florida, USA).
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for Suisun marsh using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (6912 points, collected across public and private land in 2018), Normalized Difference Vegetation Index (NDVI) derived from an airborne multispectral image (June 2018), a 1 m lidar DEM from September 2018, and a 1 m canopy surface model were used to generate models of predicted bias across the...
thumbnail
This data table contains summary data for temperature time series in near-surface sediments in high and low tidal marsh at 7 sites during 2015. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
This table contains data on dry mass remaining in a subset of Salicornia pacifica and Deschampsia cespitosa litter bags removed over a series of time points spanning 6 months. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for wetlands throughout Collier county using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (15,223 points), NAIP-derived Normalized Difference Vegetation Index (2010), a 10 m lidar DEM from 2007, and a 10 m canopy surface model were used to generate a model of predicted bias across marsh, mangrove, and cypress habitats. The predicted bias was then subtracted from...
thumbnail
This dataset provides seedling density and site characteristics for 131 plots in Whiskeytown National Recreation Area in California, USA. Site characteristics include modeled seed availability and terrain indices calculated using a 1 meter resolution digital elevation model (DEM).
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for the area surrounding Blackwater National Wildlife Refuge in Chesapeake Bay using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (3699 points, collected across four tidal marsh sites in Chesapeake Bay (Eastern Neck, Martin, Bishops Head, and Blackwater) in 2010 and 2017. Normalized Difference Vegetation Index (NDVI) derived from an airborne multispectral image...
thumbnail
This dataset contains avian survey observations across four tidal marsh areas around San Francisco Bay. Multiple surveys were conducted around both high and low tides during the winter of 2010/11. Each survey alternated between scan and focals. During scans, all observable birds were counted. During focals, the behavior of a single, randomly selected bird was observed. Water level data was collected concurrently at each site and is provided with the avian survey data. These data support the following publication: Thorne, K.M., Spragens, K.A., Buffington, K.J., Rosencranz, J.A. and Takekawa, J., 2019. Flooding regimes increase avian predation on wildlife prey in tidal marsh ecosystems. Ecology and evolution, 9(3),...
thumbnail
Model projections of mangrove soil elevation under a range of sea-level rise scenarios (37, 52, 67, and 117 cm by 2100). Soil elevation changed in response to mineral and organic matter inputs and relative changes in sea-level. The model was calibrated using dated soil cores, extensive elevation and vegetation survey data, and water level observations around Pohnpei. Mean elevation for each region was calculated from 100 Monte Carlo simulations and were output annually from 2020-2100. Further details on model development, calibration, and validation are provided in the full report.
thumbnail
Water level was monitored at two mangrove forest sites across Pohnpei, Federated States of Microneisa. Water levels were recorded with pressure-transducing dataloggers (Solinst) for eight months (July 2016-March 2017). Elevation surveys (differential leveling) were used to convert water levels relative to the Earth Geoid Model of 2008.
thumbnail
These datasets provide: 1) field-collected biomass and structural attributes for coastal salt marsh in the Port Fourchon area, Louisiana; 2) simulated biomass and structural attributes along flooding gradients using mixed model regression outputs; and 3) resilience metrics calculated using multivariate hypervolumes along with potential environmental covariates of resilience metrics.
thumbnail
Recent data syntheses have clarified future relative sea-level rise exposure and sensitivity thresholds for drowning. We integrated these advances to estimate when and where rising sea levels could cross thresholds for initiating wetland drowning across the conterminous United States. We evaluated three sea-level rise thresholds for wetland drowning (4, 7, and 10 mm/yr). Our study area spans the coastal conterminous United States, which includes Washington, D.C. and 22 coastal states along the Pacific Ocean, Gulf of Mexico, and Atlantic Ocean. Within the study area, we created a grid of 168 1-degree resolution cells for data acquisition and analyses. We examined three alternative sea-level rise scenarios, the Intermediate-Low,...
thumbnail
Decomposition of plant matter is one of the key processes affecting carbon cycling and storage in tidal wetlands. In this study, we evaluated the effects of factors related to climate change (temperature, inundation) and vegetation composition on rates of litter decay in seven tidal marsh sites along the Pacific coast. In 2014 we conducted manipulative experiments to test inundation effects on litter decay at Siletz Bay, OR and Petaluma marsh, CA. In 2015 we studied decay of litter in high and low elevation marshes at seven Pacific coast sites. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R., Thorne, K.M., Dugger, B.D. and Takekawa, J.Y., 2017. Inundation, vegetation,...
thumbnail
U.S. Geological Survey (USGS) scientists conducted field work efforts during February 15-23, 2017 and April 10-25, 2019 in the mangrove forests of Pohnpei, Federated States of Micronesia (FSM) with logistical assistance from the Micronesia Conservation Trust (MCT) and field assistance from the Conservation Society of Pohnpei and the Pohnpei Department of Forestry. The field team combined the surveying technologies and techniques of Real-Time Kinematic (RTK) Global Navigation Satellite System (GNSS) surveying, total station surveying, and differential leveling to measure elevations on critical features in the mangrove forests, including the elevations of water level recorders, sediment coring locations, and Surface...


map background search result map search result map Decomposition of plant litter in Pacific coast tidal marshes, 2014-2015 Inundation Experiments, 2014 Decomposition rates and carbon:nitrogen ratios for different litter types, 2015 Litter Decomposition Rates, 2015 Sediment Temperature, 2015 Linear loss of litter over time, 2015 Data for climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes LEAN-corrected San Francisco Bay Digital Elevation Model, 2018 LEAN-Corrected DEM for Suisun Marsh San Francisco Bay Tidal Marsh Avian Predator Surveys, 2010 Blackwater LEAN-Corrected Chesapeake Bay Digital Elevation Models, 2019 LEAN-Corrected Collier County DEM for wetlands Field and simulated data to construct hypervolumes of coastal wetland plant states for resilience quantification, Louisiana, USA (2016-2017) Pohnpei, Federated States of Micronesia Mangrove Elevation Survey Data Elevation Projections for Pohnpei Mangrove Forests Under a Range of Sea-level Rise Scenarios, 2020-2100 Water Level Across Two Mangrove Sites in Pohnpei, Federated States of Micronesia, July 2016 - March 2017 Elevation Survey Across Southwest Florida Coastal Wetlands, 2021 Data Describing Site Characteristics Including Conifer Regeneration Following the 2018 Carr Fire in Whiskeytown National Recreation Area Elevation and Mangrove Cover Projections under Sea-Level Rise Scenarios at J.N. Ding Darling National Wildlife Refuge, Sanibel Island, Florida, 2020-2100 When and where could rising seas cross thresholds for initiating wetland drowning across conterminous United States? Elevation and Mangrove Cover Projections under Sea-Level Rise Scenarios at J.N. Ding Darling National Wildlife Refuge, Sanibel Island, Florida, 2020-2100 Data Describing Site Characteristics Including Conifer Regeneration Following the 2018 Carr Fire in Whiskeytown National Recreation Area Pohnpei, Federated States of Micronesia Mangrove Elevation Survey Data Elevation Projections for Pohnpei Mangrove Forests Under a Range of Sea-level Rise Scenarios, 2020-2100 Water Level Across Two Mangrove Sites in Pohnpei, Federated States of Micronesia, July 2016 - March 2017 LEAN-Corrected DEM for Suisun Marsh Blackwater LEAN-Corrected Chesapeake Bay Digital Elevation Models, 2019 Elevation Survey Across Southwest Florida Coastal Wetlands, 2021 Field and simulated data to construct hypervolumes of coastal wetland plant states for resilience quantification, Louisiana, USA (2016-2017) LEAN-corrected San Francisco Bay Digital Elevation Model, 2018 LEAN-Corrected Collier County DEM for wetlands Data for climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes Decomposition of plant litter in Pacific coast tidal marshes, 2014-2015 Inundation Experiments, 2014 Decomposition rates and carbon:nitrogen ratios for different litter types, 2015 Litter Decomposition Rates, 2015 Sediment Temperature, 2015 Linear loss of litter over time, 2015 When and where could rising seas cross thresholds for initiating wetland drowning across conterminous United States?