Skip to main content
Advanced Search

Filters: Types: OGC WMS Layer (X) > partyWithName: Natural Hazards (X) > Types: Shapefile (X) > Types: Citation (X)

58 results (8ms)   

Filters
Contacts (Less)
View Results as: JSON ATOM CSV
thumbnail
This dataset consists of short-term (~31 years) shoreline change rates for the north coast of Alaska between the Point Barrow and Icy Cape. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1979 and 2010. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate short-term rates.
thumbnail
This dataset has been superseded. The most current data for this data release are available here: https://www.sciencebase.gov/catalog/item/663a57e7d34e77890839b06f This dataset consists of short-term (~32 years) shoreline change rates for the north coast of Alaska between the U.S. Canadian Border and the Hulahula River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1978 and 2010. A reference baseline was used as the originating point for the orthogonal...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 0.2-second period with a 50 percent probability of exceedance in 50 years.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 1.0-second period with a 10 percent probability of exceedance in 50 years.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 10 percent probability of exceedance in 50 years.
thumbnail
This dataset includes a reference baseline used by the Digital Shoreline Analysis System (DSAS) to calculate rate-of-change statistics for the sheltered north coast of Alaska coastal region between the Colville River and Point Barrow for the time period 1947 to 2012. This baseline layer serves as the starting point for all transects cast by the DSAS application and can be used to establish measurement points used to calculate shoreline-change rates.
thumbnail
This dataset has been superseded. The most current data for this data release are available here: https://www.sciencebase.gov/catalog/item/663a50c9d34e77890839b03b This dataset consists of long-term (~63 years) shoreline change rates for the north coast of Alaska between the Hulahula River and the Colville River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2010. A reference baseline was used as the originating point for the orthogonal transects...
thumbnail
This dataset has been superseded. The most current data for this data release are available here: https://www.sciencebase.gov/catalog/item/663a51ded34e77890839b048 This dataset includes a reference baseline used by the Digital Shoreline Analysis System (DSAS) to calculate rate-of-change statistics for the exposed north coast of Alaska coastal region between the Hulahula River and the Colville River for the time period 1947 to 2010. This baseline layer serves as the starting point for all transects cast by the DSAS application and can be used to establish measurement points used to calculate shoreline-change rates.
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the 2010 USGS preliminary model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the gridded data for the 2010 PGA at 10% probability can be found in the zip archive that can be downloaded using a link on this page.
thumbnail
Maximum considered earthquake geometric mean peak ground acceleration maps (MCEG) are for assessment of the potential for liquefaction and soil strength loss, as well as for determination of lateral earth pressures in the design of basement and retaining walls. The maps are derived from the USGS seismic hazard maps in accordance with the site-specific ground-motion procedures of the NEHRP Recommended Seismic Provisions for New Building and Other Structures and the ASCE Minimum Design Loads for Buildings and Other Structures (also known as the ASCE 7 Standard; ASCE, 2016). The MCEG ground motions are taken as the lesser of probabilistic and deterministic values, as explained in the Provisions. The gridded probabilistic...
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the Global Seismic Hazard Assessment Program (GSHAP) model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the GSHAP data can be found here. Shedlock, K.M., Giardini, Domenico, Grünthal, Gottfried, and Zhang, Peizhan, 2000, The GSHAP Global Seismic Hazar Map, Sesimological Research Letters, 71, 679-686. https://doi.org/10.1785/gssrl.71.6.679
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 2 percent probability of exceedance in 50 years.
thumbnail
This dataset represents the spatial locations of all modeled aftershocks magnitude 2.5 and greater resulting from the HayWired M7.0 mainshock occurring on April 18, 2018 along the Hayward Fault. The date/time, horizontal and vertical location, and sequence position is provided for each aftershock. The spatial extent covers 24 counties in whole or in part, corresponding to the modeled shaking extent for the HayWired mainshock ShakeMap (available at https://earthquake.usgs.gov/scenarios/eventpage/ushaywiredm7.05_se#shakemap). The sequence is simulated based on several known statistical relationships and generated using an epidemic type aftershock sequence (ETAS) model, resulting in one possible aftershock sequence....
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 50 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 0.2-second period with a 2 percent probability of exceedance in 50 years.
thumbnail
This dataset consists of long-term (~65 years) shoreline change rates for the north coast of Alaska between Point Barrow and Icy Cape. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1947 and 2012. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate long-term rates.
thumbnail
This dataset includes shorelines from 65 years ranging from 1947 to 2012 for the north coast of Alaska between the Colville River and Point Barrow. Shorelines were compiled from topographic survey sheets (T-sheets; National Oceanic and Atmospheric Administration (NOAA)), aerial orthophotographs (U.S. Geological Survey (USGS), National Aeronautics and Space Administration (NASA), and lidar elevation data(USGS). Historical shoreline positions serve as easily understood features that can be used to describe the movement of beaches through time. These data are used to calculate rates of shoreline change for the U.S. Geological Survey's National Assessment of Shoreline Change Project. Rates of long-term and short-term...


map background search result map search result map Navigation data for marine geophysical data collected between Punta Gorda and Fort Bragg (northern California) during field activity B-04-12-NC from 09/17/2012 to 09/25/2012 Navigation data for marine geophysical data collected between Shelter Cove and Fort Bragg (northern California) during field activity B-5-10-NC from 09/20/2010 to 10/01/2010 Navigation data for marine geophysical data collected collected between Fort Bragg and Point Arena (northern California) during field activity C-1-10-NC from 08/09/2010 to 08/15/2010 Point locations for earthquakes M2.5 and greater in a two-year aftershock sequence resulting from the HayWired scenario earthquake mainshock (4/18/2018) in the San Francisco Bay area, California Offshore baseline for the exposed Central Beaufort Sea, Alaska coastal region (Hulahula River to the Colville River) generated to calculate shoreline change rates Offshore baseline for the sheltered West Beaufort Sea, Alaska coastal region (Colville River to Point Barrow) generated to calculate shoreline change rates Shorelines of the Western Beaufort Sea, Alaska coastal region (Colville River to Point Barrow) used in shoreline change analysis Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed Central Beaufort Sea coast of Alaska between the Hulahula River and the Colville River Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between Point Barrow and Icy Cape Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Sheltered East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between the Point Barrow and Icy Cape Peak ground acceleration with a 2% probability of exceedance in 50 years Peak ground acceleration with a 10% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 2% probability of exceedance in 50 years 1.0-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model 0.2-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years Navigation data for marine geophysical data collected between Punta Gorda and Fort Bragg (northern California) during field activity B-04-12-NC from 09/17/2012 to 09/25/2012 Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between the Point Barrow and Icy Cape Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Sheltered East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River Offshore baseline for the sheltered West Beaufort Sea, Alaska coastal region (Colville River to Point Barrow) generated to calculate shoreline change rates Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed Central Beaufort Sea coast of Alaska between the Hulahula River and the Colville River Offshore baseline for the exposed Central Beaufort Sea, Alaska coastal region (Hulahula River to the Colville River) generated to calculate shoreline change rates Shorelines of the Western Beaufort Sea, Alaska coastal region (Colville River to Point Barrow) used in shoreline change analysis Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Long-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between Point Barrow and Icy Cape Point locations for earthquakes M2.5 and greater in a two-year aftershock sequence resulting from the HayWired scenario earthquake mainshock (4/18/2018) in the San Francisco Bay area, California Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model 1.0-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 2% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years Peak ground acceleration with a 2% probability of exceedance in 50 years Peak ground acceleration with a 10% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years