Skip to main content
Advanced Search

Filters: Extensions: Project (X) > Types: OGC WMS Service (X)

346 results (30ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Changing climate conditions (e.g. changes to air temperature, surface temperature, snowpack duration, and soil temperature) are affecting where trees are able to successfully grow and are bringing changes to the structure of forests throughout many parts of Alaska. In order to understand and project future vegetation changes, scientists use computer models to establish the relationships between climate variables, such as those mentioned above, and ecological responses such as the presence or absence of a tree species, tree growth and establishment, changes in sap flow, and other demographic and physiological responses. These computer models, however, frequently do not account for Alaska’s extreme topography and...
thumbnail
Globally, shorelines provide a vital defense system against extreme weather and erosion events and are a critical public and cultural resource. Within the state of Hawaiʻi, coastal vulnerability and historic change has been well documented and studied on the Islands of Oʻahu, Maui, and Kauaʻi, but this has not been done for the Island of Hawaiʻi, the largest and most diverse island in the Hawaiian archipelago. For example, Hurricane Lane caused major flooding and coastal erosion on Hawaiʻi Island in 2018, but no comprehensive baseline shoreline dataset exists to document and quantify the changes it caused. To help fill this knowledge gap, this study aims to create a shoreline inventory of the entire coastline...
thumbnail
Description of Work U.S. Geological Survey (USGS) scientists are focusing on restoring natural water flow and ecological processes between coastal wetlands in the Ottawa National Wildlife Refuge (Ohio) and adjacent to Lake Erie to improve fish and wildlife habitat. This pilot project will develop approaches that will restore coastal wetland function and increase ecosystem resilience to be used as a model throughout the Great Lakes basin. USGS will focus on restoring natural hydrologic processes in diked coastal wetlands adjacent to Great Lakes waters to improve wetland functions like phosphorus retention and restoration of habitats for fish and wildlife. Sustainable approaches are being developed in the Maumee River...
thumbnail
Accurate estimation of evapotranspiration (ET) is essential for assessments of water balance and hydrologic responses to forest restoration treatments in uplands adjacent to the Desert LCC. As part of the Four Forests Restoration Initiative, a new paired watershed study is being planned to assess the hydrologic effects of mechanically thinning and restoring a more frequent fire regime to the ponderosa pine forests of Arizona. Water and energy balances will be measured and modeled in these paired watersheds to help inform and better plan for the hydrologic responses of future forest restoration actions. Researchers at Northern Arizona University have collected six years of eddy covariance measurements of ET in the...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, ATMOSPHERE, ATMOSPHERE, ATMOSPHERIC WATER VAPOR, ATMOSPHERIC WATER VAPOR, All tags...
thumbnail
The Yurok Ancestral Territory, which spans northwestern California from the coastal redwood-spruce rainforest to inland forests and prairies, has provided the Yurok Tribe with an abundance of food and cultural resources for millennia. The Yurok Tribe maintains stewardship responsibility for their Ancestral Lands, which include the Yurok Reservation, and is concerned about the potential impacts of climate change on culturally significant species and the ecosystems that support them. This project had two broad objectives: The first was to meet the needs of the Yurok Tribe in collecting traditional ecological knowledge (TEK) to identify priority areas and activities for helping the Tribe plan for and respond to climate...
thumbnail
Coastal wetlands purify water, protect coastal communities from storms, sequester (store) carbon, and provide habitat for fish and wildlife. They are also vulnerable to climate change. In particular, changes in winter climate (warmer temperatures and fewer freeze events) may transform coastal wetlands in the northern Gulf of Mexico, as mangrove forests are expected to expand their range and replace salt marshes. The objective of this research was to evaluate the ecological implications of mangrove forest migration and salt marsh displacement. As part of this project, researchers identified important thresholds for ecosystem changes and highlighted coastal areas in the southeastern U.S. (e.g., Texas, Louisiana,...


map background search result map search result map Using Yurok Traditional Ecological Knowledge to Set Climate Change Priorities Ecological Implications of Mangrove Forest Migration in the Southeastern U.S. Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC New Strategies for Restoring Coastal Wetland Function, Maumee River Area of Concern Observing and Understanding the Impacts of Climate on Alaskan Forests Generating a Shoreline Inventory for Hawai‘i Island to Increase Resilience in the Face of Rising Sea Levels Using Yurok Traditional Ecological Knowledge to Set Climate Change Priorities New Strategies for Restoring Coastal Wetland Function, Maumee River Area of Concern Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC Ecological Implications of Mangrove Forest Migration in the Southeastern U.S. Generating a Shoreline Inventory for Hawai‘i Island to Increase Resilience in the Face of Rising Sea Levels Observing and Understanding the Impacts of Climate on Alaskan Forests