Skip to main content
Advanced Search

Filters: Categories: Data (X) > Types: OGC WFS Layer (X) > Types: OGC WMS Layer (X) > partyWithName: U.S. Geological Survey (X) > Types: GeoTIFF (X)

31 results (12ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission, the Arkansas Geological Commission, and the Louisiana Department of Transportation and Development has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group since the 1920's. Ground-water withdrawals have increased while water levels have declined since monitoring was initiated. This report has been produced to describe ground-water levels in the aquifers in the Sparta Sand and Memphis Sand and provide information for the management of this valuable resource. The 2005 potentiometric-surface map of the aquifers in the Sparta Sand and Memphis Sand was constructed using water-level data...
thumbnail
This data release provides a map of the time-averaged shear-wave velocity in the upper 30 m (Vs30) for California using the method described by Thompson and others (2014). There are two adjustments to the algorithm described by Thompson and others (2014), which is built on the geology-based Vs30 map by Wills and Clahan (2006). In this data release, we use the Wills and others (2015) updated geology-based Vs30 map. The second change is that we have adjusted the kriging procedure so that measured Vs30 values do not affect the predictions across distinctly different geologic units. July 2022 Update (ver. 2.0) Resolution is now 3 arcseconds instead of 7.5 arcseconds Fixed a code error that prevented some of the Vs30...
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at Diverting Reservoir during June 2017. Depth data were collected primarily with a multibeam echosounder. Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements for thermal stratification. Digital elevation models were created by combining the measured bathymetry data with lidar...
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at Titicus Reservoir during November 2017 and May 2018. Depth data were collected primarily with a multibeam echosounder. Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements for thermal stratification. Digital elevation models were created by combining the measured bathymetry...
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at Croton Falls Reservoir during August 2017, May 2018, and October 2019. Depth data were collected primarily with a multibeam echosounder; additional bathymetry points were measured using an acoustic Doppler current profiler (ADCP). Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements...
thumbnail
The Sparta aquifer is used in 15 parishes in north-central Louisiana, primarily for public supply and industrial purposes. Of those parishes, eight (Bienville, Claiborne, Jackson, Lincoln, Ouachita, Union, Webster, and Winn) rely on the Sparta aquifer as their principal source of groundwater. In 2010, withdrawals from the Sparta aquifer in Louisiana totaled 63.11 million gallons per day (Mgal/d), a reduction of more than 11 percent from 1995, when the highest rate of withdrawals (71.32 Mgal/d) from the Sparta aquifer were documented. The Sparta aquifer provides water for a variety of purposes which include public supply (34.61 Mgal/d), industrial (25.60 Mgal/d), rural domestic (1.50 Mgal/d), and various agricultural...
thumbnail
Stream flow in the Colorado River and Dolores River corridors has been significantly modified by water management, and continued flow alteration is anticipated in future decades with projected increases in human water demand. Bottomland vegetation has been altered as well, with invasion of non-native species, increases in wildfire and human disturbance, and currently, rapid shifts in riparian communities due to biological and mechanical tamarisk control efforts. In light of these conditions, land managers are in need of scientific information to support management of vegetation communities for values such as healthy populations of sensitive fish and wildlife species and human recreation. We propose to address these...
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at Bog Brook Reservoir during October 2017. Depth data were collected primarily with a multibeam echosounder. Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements for thermal stratification. Digital elevation models were created by combining the measured bathymetry data with lidar...
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at Cross River Reservoir During June 2018 and October 2019. Depth data were collected primarily with a multibeam echosounder; additional bathymetry points were measured using an acoustic Doppler current profiler (ADCP). Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements for...
thumbnail
This archive contains the logistic mapping vulnerability output rasters at the conceptual well locations. Data are provided in rasters containing the estimated probabilities of nitrate concentrations greater than 2 milligrams per liter at hypothetical 150-foot-deep and 300-foot-deep wells.
thumbnail
This dataset shows land cover in the Upper Oconee watershed. The data layer primarily uses the 2011 National Land Cover Database (NLCD) but was manually edited to include 2,219 additional reservoirs. The reservoirs were identified and digitized using 2010 National Aerial Imagery Program (NAIP) imagery.


map background search result map search result map Science-Based Riparian Restoration Planning on the Colorado and Dolores Rivers: A Decision Support Tool and Investigation of Habitat Complexity at Tributary Junctions Modified Land Cover Raster for the Upper Oconee Watershed An Updated Vs30 Map for California with Geologic and Topographic Constraints (ver. 2.0, July 2022) Digitized Contour from Georeferenced Plate 2005 from "Status of Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer in Arkansas and the Status of Water Levels in the Sparta Aquifer in Louisiana, Spring 2005" (Schrader and Jones, 2007; version 1.1, April 2021) Digitized Contour from Georeferenced Plate 2012 from "Potentiometric Surface, 2012, and Water-Level Differences, 2005-2012, of the Sparta Aquifer in North-Central Louisiana" Geospatial bathymetry datasets for Bog Brook Reservoir, New York, 2017 Geospatial bathymetry datasets for Cross River Reservoir, New York, 2018 to 2019 Geospatial bathymetry datasets for Croton Falls Reservoir, New York, 2017 to 2019 Geospatial bathymetry datasets for Diverting Reservoir, New York, 2017 Geospatial bathymetry datasets for Titicus Reservoir, New York, 2017 to 2018 Output vulnerability rasters from logistic mapping at the conceptual well locations for a study of groundwater vulnerability to elevated nitrates in the Puget Sound Basin, Washington, 2000–19 Geospatial bathymetry datasets for Bog Brook Reservoir, New York, 2017 Geospatial bathymetry datasets for Diverting Reservoir, New York, 2017 Geospatial bathymetry datasets for Titicus Reservoir, New York, 2017 to 2018 Geospatial bathymetry datasets for Cross River Reservoir, New York, 2018 to 2019 Geospatial bathymetry datasets for Croton Falls Reservoir, New York, 2017 to 2019 Science-Based Riparian Restoration Planning on the Colorado and Dolores Rivers: A Decision Support Tool and Investigation of Habitat Complexity at Tributary Junctions Digitized Contour from Georeferenced Plate 2012 from "Potentiometric Surface, 2012, and Water-Level Differences, 2005-2012, of the Sparta Aquifer in North-Central Louisiana" Output vulnerability rasters from logistic mapping at the conceptual well locations for a study of groundwater vulnerability to elevated nitrates in the Puget Sound Basin, Washington, 2000–19 Digitized Contour from Georeferenced Plate 2005 from "Status of Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer in Arkansas and the Status of Water Levels in the Sparta Aquifer in Louisiana, Spring 2005" (Schrader and Jones, 2007; version 1.1, April 2021) An Updated Vs30 Map for California with Geologic and Topographic Constraints (ver. 2.0, July 2022) Modified Land Cover Raster for the Upper Oconee Watershed