Skip to main content
Advanced Search

Filters: Types: ArcGIS Service Definition (X)

Folders: ROOT > ScienceBase Catalog > LC MAP - Landscape Conservation Management and Analysis Portal > North Pacific Landscape Conservation Cooperative > NPLCC GIS Datasets ( Show direct descendants )

52 results (11ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__LC MAP - Landscape Conservation Management and Analysis Portal
___North Pacific Landscape Conservation Cooperative
____NPLCC GIS Datasets
View Results as: JSON ATOM CSV
thumbnail
This set of 4 rasters shows precipitation as snow (mm) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were converted...
thumbnail
This dataset was developed as part of the research for a Royal Roads University master's thesis entitled "Assessing the impact of human activities on British Columbia’s estuaries". The work was also published through PLOS One (Robb, 2014). The estuary polygons were created by the Pacific Estuary Conservation Program (PECP). Please see Ryder et al., 2007 for more information on their creation. This dataset includes a subset of the PECP estuary dataset because only those estuary polygons that could be linked to to a unique watershed were considered in the analysis. The attributes for each estuary polygon show the spatial coverage of different human activities within the bounds of the estuary and its upstream watershed....
thumbnail
Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project.There is no widely accepted standard for analyzing shoreline...
thumbnail
This set of 4 rasters shows winter (Dec to Feb) mean temperature (deg C * 10) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This dataset shows modelled habitat suitability for the Pacific-slope Flycatcher (Empidonax difficilis) under current and projected future conditions. We built habitat suitability models for 237 bird, 117 mammal, and 12 amphibian species. Species were chosen for inclusion in the study based on a simple set of criteria. For a species to be included in the study, it had to be primarily associated with terrestrial habitats, have a digital map of its current range, and have some portion of its current distribution intersect with the study area extent. In addition, we restricted the list of species used in the study to those for which a well-performing continental-scale model could be built. Digital species range maps...
thumbnail
This set of 4 rasters shows mean temperature of the coldest month (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows summer (Jun to Aug) mean temperature (deg C * 10) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows mean summer (May to Sep) precipitation (mm) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here,...
thumbnail
This set of 4 rasters shows mean annual temperature (deg C * 10) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were...
thumbnail
This dataset shows modelled habitat suitability for the American Beaver (Castor canadensis) under current and projected future conditions. We built habitat suitability models for 237 bird, 117 mammal, and 12 amphibian species. Species were chosen for inclusion in the study based on a simple set of criteria. For a species to be included in the study, it had to be primarily associated with terrestrial habitats, have a digital map of its current range, and have some portion of its current distribution intersect with the study area extent. In addition, we restricted the list of species used in the study to those for which a well-performing continental-scale model could be built. Digital species range maps were converted...
thumbnail
This set of 4 rasters shows summer (Jun to Aug) precipitation (mm) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were...
thumbnail
This set of 4 rasters shows winter (Dec to Feb) precipitation (mm) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were...
thumbnail
This set of 4 rasters shows summer (Jun to Aug) precipitation (mm) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here,...
thumbnail
This set of 4 rasters shows winter (Dec to Feb) precipitation (mm) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were...
thumbnail
NPScape housing metrics are calculated using outputs from the Spatially Explicit Regional Growth Model. Metric GIS datasets are produced seamlessly for the United States (Lower 48). The methods underlying these calculations are available for download through the NPScape website: http://science.nature.nps.gov/im/monitor/npscape/methods.cfm.
thumbnail
This set of 4 rasters shows mean temperature of the coldest month (deg C * 10) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This dataset shows modelled habitat suitability for the Collared Pika (Ochotona collaris) under current and projected future conditions. We built habitat suitability models for 237 bird, 117 mammal, and 12 amphibian species. Species were chosen for inclusion in the study based on a simple set of criteria. For a species to be included in the study, it had to be primarily associated with terrestrial habitats, have a digital map of its current range, and have some portion of its current distribution intersect with the study area extent. In addition, we restricted the list of species used in the study to those for which a well-performing continental-scale model could be built. Digital species range maps were converted...
thumbnail
(This dataset displays the land facet elevation class) Land facets are a primary component in TNC’s analysis of site resilience to climate change. Their inclusion is based on the assumption that preservation of representative examples of the geophysical ‘Stage’ (ie., topo-edaphic factors) results in protection of a wider variety of species (the ‘Players’). These data represent a land facet classification created for the Pacific Northwest Landscape Resilience project. Each Land Facet has been stratified by terrestrial ecoregions - essentially defining each combination of soil order, elevation zone and slope class as unique from that same combination in another ecoregion. A full description of the development of...
thumbnail
This set of 4 rasters shows mean annual temperature (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were...
thumbnail
Marxan Scenario: Land Value, Temporary


map background search result map search result map WA Short Term Shoreline Change Mean Annual Temperature under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the coldest month under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the coldest month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Summer (May to Sep) Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Precipitation as Snow under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Mean Temperature under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Pacific-slope Flycatcher (Empidonax difficilis) Habitat Suitability Change Models collared_pika_map_service american_beaver_map_service NPScape housing density data sets for the conterminous U.S. (1970, 2010, 2050, and 2100) Summer (Jun to Aug) Precipitation under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) BC Estuary Threats Assessment Marxan Scenario: Land Value Climate Change Resilience in the Pacific Northwest, Land Facets Stratified by Terrestrial Ecoregions, Elevation Class WA Short Term Shoreline Change BC Estuary Threats Assessment Climate Change Resilience in the Pacific Northwest, Land Facets Stratified by Terrestrial Ecoregions, Elevation Class Pacific-slope Flycatcher (Empidonax difficilis) Habitat Suitability Change Models collared_pika_map_service american_beaver_map_service Marxan Scenario: Land Value NPScape housing density data sets for the conterminous U.S. (1970, 2010, 2050, and 2100) Mean Annual Temperature under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the coldest month under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the coldest month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Summer (May to Sep) Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Precipitation as Snow under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Mean Temperature under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Precipitation under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble)