Skip to main content
Advanced Search

Filters: Types: Raster (X) > Types: OGC WMS Layer (X) > Categories: Data (X) > Extensions: Shapefile (X)

86 results (49ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
8 aerial photographs were taken along the Little Missouri River in 1939. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...
thumbnail
Aerial photographs were taken along the Little Missouri River in 2003, however the 2003 IKONOS satellite imagery is proprietary and therefore cannot be served here. The channel delineations for all years, including 2003, and the delineation of the outer flood-plain boundary are stored as shapefiles and are included in this data release. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved...
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at Kensico Reservoir from June to August, 2018. Depth data were collected primarily with a multibeam echosounder. Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements for thermal stratification. Digital elevation models were created by combining the measured bathymetry data with...
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) First release: April, 2019; revised April 2021 (version 1.1). The previous version can be obtained by contacting the USGS Lower Mississippi-Gulf...
thumbnail
The most widely used aquifer for industry and public supply in the Mississippi embayment in Arkansas, Louisiana, Mississippi, and Tennessee is the Sparta-Memphis aquifer. Decades of pumping from the Sparta-Memphis aquifer have affected ground-water levels throughout the Mississippi embayment. Regional assessments of water-level data from the aquifer are important to document regional water-level conditions and to develop a broad view of the effects of ground-water development and management on the sustainability and availability of the region's water supply. This information is useful to identify areas of water-level declines, identify cumulative areal declines that may cross State boundaries, evaluate the effectiveness...
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) Ryals, G. N., 1980, Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980: U.S. Geological...
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) First release: April, 2019; revised April 2021 (version 1.1). The previous version can be obtained by contacting the USGS Lower Mississippi-Gulf...
thumbnail
The supplemental data presented here contains three raster datasets representing the evapotranspiration (ET) units for northern, southern, and western regions of Harney Basin (raster datasets in .tif format) and one vector dataset of ET-unit observations used to delineate ET units (vector dataset in .shp format). Eleven ET units were identified from ET-unit observations of land cover and include bare soil or playa (1), marsh (2), dry meadow (3), wet meadow (4), open water (5), riparian (6), mixed shrubland (7), phreatophyte shrubland (8), xerophyte shrubland (9), sagebrush shrubland (10), and xerophyte grassland (11). Irrigated areas are excluded from ET units. Unpublished land-cover datasets collected by the U.S....
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMGP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Simple shapefile to represent a area of interest for demonstration purposes
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at Muscoot Reservoir during June 2017 and November 2019. Depth data were collected primarily with a multibeam echosounder. Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements for thermal stratification. Digital elevation models were created by combining the measured bathymetry...
thumbnail
The depths to a high and average water table below the land surface were estimated across the Clover Creek watershed in Pierce County, Washington. Groundwater model simulations provided initial estimates of water-table depths for the analysis. To provide optimized, data-driven estimates of these depths, a continuous bias correction surface was applied to model output according to differences between simulated and observed water levels at observation wells.
thumbnail
4 aerial photographs were taken along the Little Missouri River in 1974. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...
thumbnail
The Ozark Plateau aquifer system stretches across approximately 70,000 square miles (mi2) of Arkansas, Missouri, Kansas and Oklahoma, and is composed of many hydrogeologic units, such as the Boone aquifer and the Roubidoux aquifer. However, this data release is focused on only 11,000 mi2 in northern Arkansas, southeastern Kansas, southwestern Missouri, and northeastern Oklahoma. The Boone aquifer covers approximately 10,700 mi2 of this area, and the Roubidoux aquifer covers the 11,000 mi2 area entirely. These aquifers are mostly made of Mississippian-aged and Ordovician-aged carbonate rock, and serve as the main sources of fresh groundwater in northeastern Oklahoma (Imes and Emmett, 1994). In 2017, the U.S. Geological...
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at East Branch Reservoir May 2018, June 2018, and October 2019. Depth data were collected primarily with a multibeam echosounder; additional bathymetry points were measured using an acoustic Doppler current profiler (ADCP). Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements...


map background search result map search result map GAP Ecological Systems for Columbia Plateau LC MAP Demo Area Of Interest Shapefiles and Historical Aerial Photographs, Little Missouri River, 1939 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1974 Shapefiles and Historical Aerial Photographs, Little Missouri River, 2003 American Black Bear (Ursus americanus) mABBEx_CONUS_2001v1 Web Service Digitized Contours of Georeferenced Plate 1900 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" Digitized Contours from Georeferenced Plate 1965 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 1975 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contour from Georeferenced plate 2007 from "Potentiometric Surface in the Sparta-Memphis Aquifer of the Mississippi Embayment, Spring 2007" (Shrader, 2008; version 1.1, April 2021) points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Fire Island, NY, 2014–2015 Data used to describe hydrogeologic units and create contour maps and cross sections of the Boone and Roubidoux Aquifers, northeastern Oklahoma points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Assateague Island, MD & VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Metompkin Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Smith Island, VA, 2014 Geospatial bathymetry datasets for East Branch Reservoir, New York, 2018 to 2019 Geospatial bathymetry datasets for Kensico Reservoir, New York, 2018 Geospatial bathymetry datasets for Muscoot Reservoir, New York, 2017 to 2019 (2) Evapotranspiration Units Delineated by Region in the Harney Basin Groundwater Evapotranspiration Area and Evapotranspiration-Unit Observations, Southeastern Oregon High and average water table estimates for Clover Creek watershed, Pierce County, Washington Geospatial bathymetry datasets for Kensico Reservoir, New York, 2018 Geospatial bathymetry datasets for East Branch Reservoir, New York, 2018 to 2019 Geospatial bathymetry datasets for Muscoot Reservoir, New York, 2017 to 2019 Shapefiles and Historical Aerial Photographs, Little Missouri River, 2003 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Metompkin Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Smith Island, VA, 2014 High and average water table estimates for Clover Creek watershed, Pierce County, Washington points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Fire Island, NY, 2014–2015 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Assateague Island, MD & VA, 2014 LC MAP Demo Area Of Interest (2) Evapotranspiration Units Delineated by Region in the Harney Basin Groundwater Evapotranspiration Area and Evapotranspiration-Unit Observations, Southeastern Oregon Digitized Contours of Georeferenced Plate 1900 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" Digitized Contours from Georeferenced Plate 1965 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 1975 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Data used to describe hydrogeologic units and create contour maps and cross sections of the Boone and Roubidoux Aquifers, northeastern Oklahoma Digitized Contour from Georeferenced plate 2007 from "Potentiometric Surface in the Sparta-Memphis Aquifer of the Mississippi Embayment, Spring 2007" (Shrader, 2008; version 1.1, April 2021) GAP Ecological Systems for Columbia Plateau American Black Bear (Ursus americanus) mABBEx_CONUS_2001v1 Web Service