Skip to main content
Advanced Search

Filters: Types: Raster (X) > Types: OGC WMS Layer (X) > Categories: Data (X)

182 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Satellite imagery from the Landsat 5 Thematic Mapper sensor and the Landsat 8 Operational Land Imagery were used to investigate changes in overall evergreen vegetation occurring between the 1986-1989 and 2013-2014 time periods. Two path/rows of imagery, from the spring, summer, and fall seasons for each time period were mosaicked together. The imagery was then subset to remove the presence of clouds from the datasets. Images were further subset using the impervious data from the 2011 version of the National Land Cover Database. Unsupervised classification was used to spate each time period imageinto two classes, evergreen vegetation and everything else. Each subsequent time period was subjected to successive unsupervised...
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the 2010 USGS preliminary model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the gridded data for the 2010 PGA at 10% probability can be found in the zip archive that can be downloaded using a link on this page.
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the Global Seismic Hazard Assessment Program (GSHAP) model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the GSHAP data can be found here. Shedlock, K.M., Giardini, Domenico, Grünthal, Gottfried, and Zhang, Peizhan, 2000, The GSHAP Global Seismic Hazar Map, Sesimological Research Letters, 71, 679-686. https://doi.org/10.1785/gssrl.71.6.679
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMGP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Assawoman Island, Assawoman Island, Atlantic Ocean, Barrier Island, Bayesian Network, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at Amawalk Reservoir from May 2018 to November 2019. Depth data were collected primarily with a multibeam echosounder. Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements for thermal stratification. Digital elevation models were created by combining the measured bathymetry data...
thumbnail
One of the largest hydraulic mines (1.6 km2) is located in California’s Sierra Nevada within the Humbug Creek watershed and Malakoff Diggins State Historic Park (MDSHP). MDSHP’s denuded and dissected landscape is composed of weathered Eocene auriferous sediments susceptible to chronic rill and gully erosion whereas block failures and debris flows occur in more cohesive terrain. This data release includes a 1992 digital surface model (DSM), 1992 orthophoto mosaic, masked orthophoto of the study area, 1992 ground cover classification, and 1992 pruned DSM with the vegetation bias removed. Stereo-photogrammetry was used to create a 1992 digital surface model (DSM) and orthophoto mosaic from archived 1992 aerial photographs....
thumbnail
The Sparta aquifer is the principal source of ground water in north-central Louisiana. In 1985, the aquifer was extensively pumped for public supply (25 Mgal/d) and industrial use (29 Mgal/d and 7 Mgal/d for 1989). More than 100 public supply systems, in 8 parishes, contain water from the Sparta aquifer. Large industrial pumpage from the Sparta aquifer began in 1922 at Bastrop (Sanford, 1973a, p. 60) and in about 1923 at West Monroe. Water levels in wells in the Sparta aquifer have been declining in these arease and in other parts of north-central Louisiana since the early 1920's, when industries began withdrawing large amounts of water. However, in Morehouse Parish the water levels in wells have been recovering...
thumbnail
This categorical CWD raster was developed from a project-wide CWD raster. For each of the five fracture zones, the CWD raster was partitioned into zone-specific, 10 equal-area class map, ranging from low CWD to high CWD.
thumbnail
Ten focal species cost-weighted distance (CWD) surfaces from WHCWG (2010) were combined into a single categorical raster for this project. The source focal species were: western toad, northern flying squirrel, wolverine, Canada lynx, American marten, mountain goat, American black bear, elk, mule deer, and bighorn sheep.
thumbnail
This cost-weighted distance (CWD) raster was developed from a generalized shrub-steppe and grassland (SSGL) species guild resistance model based on 20th percentile of resistance values for the five statewide analysis (WHCWG 2010) focal species in this biome, including sage-grouse, black-tailed jackrabbit, white-tailed jackrabbit, badger, and sharp-tailed grouse.
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
In cooperation with the South Carolina Department of Transportation, the U.S. Geological Survey prepared a geospatial raster dataset describing impervious surface in the SC StreamStats study area derived from the 30m resolution National Land Cover Dataset (NLCD) 2019. This layer, which covers the SC StreamStats study area, has been resampled from the source resolution to a scale of 30ft pixels and reprojected to the common projection of the other project data layers (SC State Plane NAD 1983 International Feet WKID 2273). It will be served as part of the SC StreamStats application (https://streamstats.usgs.gov) to describe delineated watersheds. The StreamStats application provides access to spatial analytical tools...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 50 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
We created a single map of surface water presence by intersecting water classes from available land cover products (National Wetland Inventory, Gap Analysis Program, National Land Cover Database, and Dynamic Surface Water Extent) across the U.S. state of Arizona. We derived classified samples for four wetland classes from the harmonized map: water, herbaceous wetlands, wooded wetlands, and non-wetland cover. In Google Earth Engine (GEE) we developed a random forest model that combined the training data with spatially explicit predictor variables of vegetation greenness indices, wetness indices, seasonal index variation, topographic variables, and hydrologic parameters. The final product is a wall-to-wall map of...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
7 aerial photographs were taken along the Little Missouri River in 1949. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...


map background search result map search result map Evergreen Change in Central Oklahoma from 1986 - 2014 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1949 Cost-weighted distance (CWD) categorical raster, Highway 3 West Generalization of 10 focal species cost-weighted distance (CWD) categorical raster, Highway 3 West Shrubsteppe and grassland (SSGL) species guild CWD, Highway 97 South 1992 digital surface model and orthomosaic of Malakoff Diggins State Historic Park, California Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years Floodplain Inundation Attribute Rasters: Mississippi & Illinois Rivers Digitized Contours from Georeferenced Plate 1989 from "Louisiana ground-water map no. 3: Potentiometric surface, 1989, and water-level changes, 1980-89, of the Sparta aquifer in north-central Louisiana" points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2013–2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cape Lookout, NC, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Assawoman Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Fisherman Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Myrtle Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Ship Shoal Island, VA, 2014 Geospatial bathymetry datasets for Amawalk Reservoir, New York, 2018 to 2019 Impervious Land Cover Raster Derived from the National Land Cover Dataset (NLCD) 2019 for South Carolina StreamStats Wetlands in the state of Arizona Geospatial bathymetry datasets for Amawalk Reservoir, New York, 2018 to 2019 1992 digital surface model and orthomosaic of Malakoff Diggins State Historic Park, California points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Fisherman Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Ship Shoal Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Myrtle Island, VA, 2014 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1949 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Assawoman Island, VA, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cape Lookout, NC, 2014 Digitized Contours from Georeferenced Plate 1989 from "Louisiana ground-water map no. 3: Potentiometric surface, 1989, and water-level changes, 1980-89, of the Sparta aquifer in north-central Louisiana" Evergreen Change in Central Oklahoma from 1986 - 2014 Impervious Land Cover Raster Derived from the National Land Cover Dataset (NLCD) 2019 for South Carolina StreamStats Wetlands in the state of Arizona Cost-weighted distance (CWD) categorical raster, Highway 3 West Generalization of 10 focal species cost-weighted distance (CWD) categorical raster, Highway 3 West Shrubsteppe and grassland (SSGL) species guild CWD, Highway 97 South Floodplain Inundation Attribute Rasters: Mississippi & Illinois Rivers Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years