Skip to main content
Advanced Search

Filters: Types: Raster (X) > Types: OGC WMS Layer (X) > Categories: Data (X)

182 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data release includes data collected from the Villa Grove helicopter magnetic survey in northern San Luis Valley and Poncha Pass region in south-central Colorado, USA. The survey area extends over the northern part of Great Sand Dunes National Park, Poncha Pass and vicinity, and into the southern end of the Upper Arkansas Valley. It includes the communities of Crestone, Villa Grove, Saguache, and Salida. Several U.S. Geological Survey programs (including the National Cooperative Geologic Mapping Program, Mineral Resources Program, and Geothermal Program), as well as the Colorado Geological Survey, funded the survey. The data are part of studies to help refine our knowledge in this area about the nature of aquifers,...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMGP, Coastal Erosion, All tags...
thumbnail
8 aerial photographs were taken along the Little Missouri River in 1939. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...
thumbnail
Aerial photographs were taken along the Little Missouri River in 2003, however the 2003 IKONOS satellite imagery is proprietary and therefore cannot be served here. The channel delineations for all years, including 2003, and the delineation of the outer flood-plain boundary are stored as shapefiles and are included in this data release. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved...
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at Kensico Reservoir from June to August, 2018. Depth data were collected primarily with a multibeam echosounder. Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements for thermal stratification. Digital elevation models were created by combining the measured bathymetry data with...
thumbnail
This dataset has been archived; it has been superseded by version 2.0 (November 2021) which can be found at https://doi.org/10.5066/P95PT2RV. Static flood inundation boundary extents were created along the entire shoreline of Lake Ontario in Cayuga, Jefferson, Monroe, Niagara, Orleans, Oswego, and Wayne Counties in New York by using recently acquired (2007, 2010, 2014, and 2017) light detection and ranging (lidar) data. The flood inundation maps, accessible through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and water depth of shoreline flooding in 8 segments corresponding...
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) First release: April, 2019; revised April 2021 (version 1.1). The previous version can be obtained by contacting the USGS Lower Mississippi-Gulf...
thumbnail
The most widely used aquifer for industry and public supply in the Mississippi embayment in Arkansas, Louisiana, Mississippi, and Tennessee is the Sparta-Memphis aquifer. Decades of pumping from the Sparta-Memphis aquifer have affected ground-water levels throughout the Mississippi embayment. Regional assessments of water-level data from the aquifer are important to document regional water-level conditions and to develop a broad view of the effects of ground-water development and management on the sustainability and availability of the region's water supply. This information is useful to identify areas of water-level declines, identify cumulative areal declines that may cross State boundaries, evaluate the effectiveness...
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) Ryals, G. N., 1980, Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980: U.S. Geological...
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) First release: April, 2019; revised April 2021 (version 1.1). The previous version can be obtained by contacting the USGS Lower Mississippi-Gulf...
thumbnail
Simple shapefile to represent a area of interest for demonstration purposes
thumbnail
This is a land cover dataset for Nebraska that was most recently updated in 2020 by the Rainwater Basin Joint Venture. This metadata record supplements the complete description of the data in Bishop, A., Grosse,R., Barenberg, A., Volpe, N., and Riens, J. January, Nebraska Land Cover Development Version 2016. Rainwater Basin Joint Venture, U.S. Fish and Wildlife Service, Grand Island, Nebraska.
thumbnail
By collaborating with water managers and combining climate modeling and paleoclimate methods, the project team will incorporate prediction tools to assess risk of extreme wet/dry climate conditions for the next 10-15 years (i.e. decadal prediction). Our target area is the Wasatch Range Metropolitan Area that includes Salt Lake City one of the largest population centers within the Southern Rockies LCC. We will focus on projecting future water availability and quality with a specific goal for decadal prediction. The project team has partnered with numerous water agencies in the Wasatch Range who have made in-kind contributions towards this project. This partnership guarantees that the results will be disseminated,...
thumbnail
This USGS Data Release represents geospatial and tabular data for the Nisqually River Delta historical habitat mapping. The data release was produced in compliance with the new 'open data' requirements as a way to make the scientific products associated with USGS research efforts and publications available to the public. The dataset consists of 9 separate items: 1. Forest Change (raster dataset) 2. Forest Type Change (raster dataset) 3. Functional Pathway Change (raster dataset) 4. 1957 Habitat Map (raster dataset) 5. 1980 Habitat Map (raster dataset) 6. 2015 Habitat Map (raster dataset) 7. 1980 Species Map (raster dataset) 8. 2015 Species Map (raster dataset) 9. Wetland Change (raster dataset) These data support...
thumbnail
This Data Release accompanies the publication "State of stress in areas of active unconventional oil and gas development in North America" by J.-E. Lund Snee (now J.-E. Lundstern) and M.D. Zoback (2022) in the AAPG Bulletin. This dataset provides maximum horizontal stress (SHmax) orientation and relative stress magnitude (faulting regime) information that comprise a new-generation crustal stress map for North America. Relative stress magnitudes are presented using the AÏ• (A_phi) parameter, a single scalar that represents the ratio of the three principal stress magnitudes. Data were collected between 2015 and 2022. Data points for SHmax orientations, relative stress magnitudes, and the earthquake focal mechanisms...
thumbnail
The supplemental data presented here contains three raster datasets representing the evapotranspiration (ET) units for northern, southern, and western regions of Harney Basin (raster datasets in .tif format) and one vector dataset of ET-unit observations used to delineate ET units (vector dataset in .shp format). Eleven ET units were identified from ET-unit observations of land cover and include bare soil or playa (1), marsh (2), dry meadow (3), wet meadow (4), open water (5), riparian (6), mixed shrubland (7), phreatophyte shrubland (8), xerophyte shrubland (9), sagebrush shrubland (10), and xerophyte grassland (11). Irrigated areas are excluded from ET units. Unpublished land-cover datasets collected by the U.S....
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMGP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...


map background search result map search result map GAP Ecological Systems for Columbia Plateau LC MAP Demo Area Of Interest WaterSMART: Building Decadal Prediction of Extreme Climate for Managing Water Supply in Intermountain West Shapefiles and Historical Aerial Photographs, Little Missouri River, 1939 Shapefiles and Historical Aerial Photographs, Little Missouri River, 2003 Historical Time-series Classification of Habitat for 1957, 1980 and 2015 in the Nisqually River Delta, Washington Digitized Contours of Georeferenced Plate 1900 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" Digitized Contours from Georeferenced Plate 1965 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 1975 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contour from Georeferenced plate 2007 from "Potentiometric Surface in the Sparta-Memphis Aquifer of the Mississippi Embayment, Spring 2007" (Shrader, 2008; version 1.1, April 2021) High Resolution Aeromagnetic Survey, Villa Grove, Colorado, USA, 2011 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2012 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Fire Island, NY, 2014–2015 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Assateague Island, MD & VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Metompkin Island, VA, 2014 Geospatial bathymetry datasets for Kensico Reservoir, New York, 2018 Flood inundation map geospatial datasets for Lake Ontario, New York Nebraska Landcover 2016 Public (Non-CRP) Version (2) Evapotranspiration Units Delineated by Region in the Harney Basin Groundwater Evapotranspiration Area and Evapotranspiration-Unit Observations, Southeastern Oregon Maximum horizontal stress orientation and relative stress magnitude (faulting regime) data throughout North America (COPY) Geospatial bathymetry datasets for Kensico Reservoir, New York, 2018 Shapefiles and Historical Aerial Photographs, Little Missouri River, 2003 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1939 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Metompkin Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2012 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Fire Island, NY, 2014–2015 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Assateague Island, MD & VA, 2014 (2) Evapotranspiration Units Delineated by Region in the Harney Basin Groundwater Evapotranspiration Area and Evapotranspiration-Unit Observations, Southeastern Oregon Digitized Contours of Georeferenced Plate 1900 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" Digitized Contours from Georeferenced Plate 1965 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 1975 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Flood inundation map geospatial datasets for Lake Ontario, New York WaterSMART: Building Decadal Prediction of Extreme Climate for Managing Water Supply in Intermountain West Digitized Contour from Georeferenced plate 2007 from "Potentiometric Surface in the Sparta-Memphis Aquifer of the Mississippi Embayment, Spring 2007" (Shrader, 2008; version 1.1, April 2021) Nebraska Landcover 2016 Public (Non-CRP) Version GAP Ecological Systems for Columbia Plateau Maximum horizontal stress orientation and relative stress magnitude (faulting regime) data throughout North America (COPY)