Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey - ScienceBase (X) > Categories: Data (X) > Types: OGC WMS Layer (X) > partyWithName: Woods Hole Coastal and Marine Science Center (X) > partyWithName: Neil Kamal Ganju (X) > Types: Downloadable (X) > partyWithName: Coastal and Marine Hazards and Resources Program (X)

Folders: ROOT > ScienceBase Catalog ( Show direct descendants )

11 results (38ms)   

View Results as: JSON ATOM CSV
thumbnail
In 2012, Hurricane Sandy struck the Northeastern US causing devastation among coastal ecosystems. Post-hurricane marsh restoration efforts have included sediment deposition, planting of vegetation, and restoring tidal hydrology. The work presented here is part of a larger project funded by the National Fish and Wildlife Foundation (NFWF) to monitor the post-restoration ecological resilience of coastal ecosystems in the wake of Hurricane Sandy. The U.S. Geological Survey Woods Hole Coastal and Marine Science Center made in-situ observations during 2018-2019 and 2022-2023 at two sites: Thompsons Beach, NJ and Stone Harbor, NJ. Marsh creek hydrodynamics and water quality including currents, waves, water levels, water...
thumbnail
The lifespans of salt marshes in Atlantic-facing Eastern Shore of Virginia are calculated based on estimated sediment supply and sea-level rise (SLR) predictions, following the methodology of Ganju and others (2020). The salt marsh delineations are from Ackerman and others (2023). The SLR predictions are local estimates corresponding to increases of 0.3, 0.5 and 1.0 meter in global mean sea level (GMSL) by 2100, as projected by Sweet and others (2022). This work has been a part of the USGS’s effort to expand the national assessment of coastal change hazards and forecast products to coastal wetlands. The aim is to equip federal, state and local managers with tools to estimate the vulnerability and ecosystem service...
thumbnail
This data release contains coastal wetland synthesis products for Chesapeake Bay. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors...
thumbnail
In 2012, Hurricane Sandy struck the Northeastern US causing devastation among coastal ecosystems. Post-hurricane marsh restoration efforts have included sediment deposition, planting of vegetation, and restoring tidal hydrology. The work presented here is part of a larger project funded by the National Fish and Wildlife Foundation (NFWF) to monitor the post-restoration ecological resilience of coastal ecosystems in the wake of Hurricane Sandy. The U.S. Geological Survey Woods Hole Coastal and Marine Science Center made in-situ observations during 2018-2019 and 2022-2023 at two sites: Thompsons Beach, NJ and Stone Harbor, NJ. Marsh creek hydrodynamics and water quality including currents, waves, water levels, water...
thumbnail
This data release contains coastal wetland synthesis products for Chesapeake Bay. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors...
thumbnail
This data release contains coastal wetland synthesis products for Chesapeake Bay. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors...
thumbnail
Lifespan of salt marshes in New York are calculated using conceptual marsh units defined by Defne and Ganju (2018) and Welk and others (2019, 2020a, 2020b, 2020c). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are local estimates which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022). The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem...
thumbnail
Lifespan distribution in the Chesapeake Bay (CB) salt marsh complex is presented in terms of lifespan of conceptual marsh units defined by Ackerman and others (2022). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are present day estimates at the prescribed rate of SLR, which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands,...
thumbnail
Lifespan of salt marshes in Massachusetts (MA) are calculated using conceptual marsh units defined by Ackerman and others (2022). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are local estimates which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022). The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including Massachusetts salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and...
thumbnail
In 2012, Hurricane Sandy struck the Northeastern US causing devastation among coastal ecosystems. Post-hurricane marsh restoration efforts have included sediment deposition, planting of vegetation, and restoring tidal hydrology. The work presented here is part of a larger project funded by the National Fish and Wildlife Foundation (NFWF) to monitor the post-restoration ecological resilience of coastal ecosystems in the wake of Hurricane Sandy. The U.S. Geological Survey Woods Hole Coastal and Marine Science Center made in-situ observations during 2018-2019 and 2022-2023 at two sites: Thompsons Beach, NJ and Stone Harbor, NJ. Marsh creek hydrodynamics and water quality including currents, waves, water levels, water...
thumbnail
The lifespans of salt marshes in Connecticut are calculated based on estimated sediment supply and sea-level rise (SLR) predictions, following the methodology of Ganju and others (2020). The salt marsh delineations are from Ackerman and others (2023). The SLR predictions are local estimates corresponding to increases of 0.3, 0.5 and 1.0 meter in global mean sea level (GMSL) by 2100, as projected by Sweet and others (2022). This work has been a part of the USGS’s effort to expand the national assessment of coastal change hazards and forecast products to coastal wetlands. The aim is to equip federal, state and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....


    map background search result map search result map Elevation of marsh units in Chesapeake Bay salt marshes Unvegetated to vegetated ratio of marsh units in Chesapeake Bay salt marshes Mean tidal range of marsh units in Chesapeake Bay salt marshes Lifespan of Chesapeake Bay salt marsh units Lifespan of Massachusetts salt marsh units Grain-size analysis data from sediment samples in support of oceanographic and water-quality measurements at Thompsons Beach and Stone Harbor, New Jersey, collected in September 2018 and March 2022 Suspended-sediment concentration and loss-on-ignition from water samples at Thompsons Beach and Stone Harbor, New Jersey, collected between September 2018 and December 2022 Unvegetated to vegetated ratio at Thompsons Beach and Stone Harbor, New Jersey from 2014 to 2018 Lifespan of marsh units in New York salt marshes Lifespan of marsh units in Connecticut salt marshes Lifespan of marsh units in Eastern Shore of Virginia salt marshes Grain-size analysis data from sediment samples in support of oceanographic and water-quality measurements at Thompsons Beach and Stone Harbor, New Jersey, collected in September 2018 and March 2022 Unvegetated to vegetated ratio at Thompsons Beach and Stone Harbor, New Jersey from 2014 to 2018 Suspended-sediment concentration and loss-on-ignition from water samples at Thompsons Beach and Stone Harbor, New Jersey, collected between September 2018 and December 2022 Lifespan of marsh units in Eastern Shore of Virginia salt marshes Lifespan of marsh units in Connecticut salt marshes Lifespan of Massachusetts salt marsh units Lifespan of marsh units in New York salt marshes Lifespan of Chesapeake Bay salt marsh units Elevation of marsh units in Chesapeake Bay salt marshes Unvegetated to vegetated ratio of marsh units in Chesapeake Bay salt marshes Mean tidal range of marsh units in Chesapeake Bay salt marshes