Skip to main content
Advanced Search

Filters: Categories: Data (X) > Extensions: Shapefile (X) > Types: Shapefile (X) > Types: OGC WMS Layer (X) > Types: Citation (X)

Folders: ROOT > ScienceBase Catalog > USGS Data Release Products ( Show direct descendants )

353 results (13ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS. The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped into 1-minute increments for easier visualization. The times in...
thumbnail
This dataset is the result of measurements of groundwater levels in the Equus Beds aquifer near Wichita, Kansas, in January 2016. Potentiometric surfaces are interpolated for the shallow and deep parts of the aquifer, and rasters of the potentiometric surfaces are included in this data release. Wells were classified as being screened in the shallow or deep parts of the aquifer based on station name (some wells have a layer identifier in the station name) or, if no indication of aquifer layer was given in the station name, based on the depth of the well; wells with depths less than 80 feet below land surface were classified as shallow and wells with depths of 80 feet or deeper were classified as deep. Contours with...
thumbnail
Region(s) of distribution of Shulupaoluk (Lycodes jugoricus) Knipowitsch, 1906 in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic seas where...
thumbnail
Region(s) of distribution of Sakhalin Sole (Limanda sakhalinensis) Hubbs, 1915 in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic seas where...
thumbnail
Region(s) of distribution of Arctic Staghorn Sculpin (Gymnocanthus tricuspis) (Reinhardt, 1830) in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent...
thumbnail
Region(s) of distribution of Halfbarred Pout (Gymnelus hemifasciatus) Andriashev, 1937 in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic seas...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
Categories: Data; Types: Citation, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Beach, Atlantic Coast, Bald Head Island, Bogue Banks, Browns Inlet, All tags...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
This dataset contains data collected within limestone cedar glades at Stones River National Battlefield (STRI) near Murfreesboro, Tennessee. This dataset contains information on soil microbial metabolic response for soil samples obtained from certain quadrat locations (points) within 12 selected cedar glades. This information derives from substrate utilization profiles based on Biolog EcoPlates (Biolog, Inc., Hayward, CA, USA) which were inoculated with soil slurries containing the entire microbial community present in each soil sample. EcoPlates contain 31 sole-carbon substrates (present in triplicate on each plate) and one blank (control) well. Once the microbial community from a soil sample is inoculated onto...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 1.0-second period with a 10 percent probability of exceedance in 50 years.
thumbnail
This dataset documents results from 1,041 groundwater samples collected during 1986‒2015 from 16 geologic units in Pennsylvania associated with 25 or more groundwater samples with activities or concentrations of radon-222. Radon-222 is hereafter referred to as “radon.” These 16 geologic units were evaluated in an effort to identify variations in radon concentrations and to classify potential radon exposure from groundwater and indoor air. This dataset was developed for the Pennsylvania Environmental Public Health Tracking (PAEPHT) Program to describe the spatial distribution of radon concentrations in groundwater in Pennsylvania and to illustrate data gaps that exist throughout the State. The PAEPHT Program is part...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
We developed spatial summary (GIS) layers for a study of factors influencing the distribution of cave and karst associated fauna within the Appalachian Landscape Conservation Cooperative region, one of 22 public-private partnerships established by the United States Fish and Wildlife Service to aid in developing landscape scale solutions to conservation problems (https://lccnetwork.org/lcc/appalachian). We gathered occurrence data on cave-limited terrestrial and aquatic troglobiotic species from a variety of sources within the Appalachian LCC region covering portions of 15 states. Occurrence records were developed from the scientific literature, existing biodiversity databases, personal records of the authors, museum...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 10 percent probability of exceedance in 50 years.
thumbnail
MethodsStudy area: Our initial study area included the entire globe. We began with a seamless grid of cells with a resolution of 0.5 degrees (i.e., ~50 km at the equator). Next, we created polylines representing coastlines using SRTM (Shuttle Radar Topographic Mission) v4.1 global digital elevation model data at a resolution of 250 m (Reuter et al. 2007). We used these coastline polylines to identify and retain cells that intersected the coast. We excluded 192,227 cells that did not intersect the coast. To avoid cells with minimal potential coastal wetland habitat, we used the coastline data to remove an additional 1,056 coastal cells that contained less than or equal to 5% coverage of land. We also removed 176...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
Water-surface elevation measurements were collected in March 2015 along the upper Willamette River, Oregon, between Eugene to Corvallis. These surveys were collected over a small range of discharges using a real time kinematic global positioning system (RTK-GPS) on a motorboat traveling "on plane" along the river. These datasets were collected for equipment calibration and validation for the National Aeronautics and Space Administration’s (NASA) Surface Water and Ocean Topography (SWOT) satellite mission. This is one of multiple survey datasets that will be released for this effort.
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
Categories: Data; Types: Citation, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: AL, Alabama, CMGP, Coastal and Marine Geology Program, DSAS, All tags...
thumbnail
Region(s) of distribution of Starry Flounder (Platichthys stellatus) (Pallas, 1787) in the Arctic as digitized for U.S. Geological Survey Scientific Investigations Report 2016-5038. For details on the project and purpose, see the report at https://doi.org/10.3133/sir20165038. Complete metadata for the collection of species datasets is in the metadata document "Dataset_for_Alaska_Marine_Fish_Ecology_Catalog.xml" at https://doi.org/10.5066/F7M61HD7. Source(s) for this digitized data layer are listed in the metadata Process Steps section. Note that the original source may show an extended area; some datasets were limited to the published map boundary. Distributions of marine fishes are shown in adjacent Arctic seas...


map background search result map search result map Average Well Color Development (AWCD) data based on Community Level Physiological Profiling (CLPP) of soil samples from 120 point locations within limestone cedar glades at Stones River National Battlefield near Murfreesboro, Tennessee Boat-based water-surface elevation surveys along the upper Willamette River, Oregon, in March, 2015 Cave and Karst Biota Modeling in the Appalachian LCC - Observed troglobiotic fish in 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted troglobiotic crayfish in sampled 20km grid cells Echosounder Points, Rondout Reservoir, 2013 to 2014 Echosounder Points, Pepacton Reservoir, 2015 Climatic controls on the global distribution, abundance, and species richness of mangrove forests Shorelines of the Alabama coastal region used in shoreline change analysis Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (shallow contours shapefile) Marine Arctic polygon distribution of Halfbarred Pout (Gymnelus hemifasciatus) Andriashev, 1937 Marine Arctic polygon distribution of Arctic Staghorn Sculpin (Gymnocanthus tricuspis) (Reinhardt, 1830) Marine Arctic polygon distribution of Sakhalin Sole (Limanda sakhalinensis) Hubbs, 1915 Marine Arctic polygon distribution of Shulupaoluk (Lycodes jugoricus) Knipowitsch, 1906 Marine Arctic polygon distribution of Starry Flounder (Platichthys stellatus) (Pallas, 1787) Tsunami Evacuation Travel Time Map for Humboldt County, CA, 2010, for Bridges Removed and a Fast Walking Speed Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for southeastern Florida (FLse) Shorelines of the southern North Carolina (NCsouth) coastal region used in shoreline change analysis PaRadonGW.shp - Evaluation of Radon Occurrence in Groundwater from 16 Geologic Units in Pennsylvania, 1986–2015, with Application to Potential Radon Exposure from Groundwater and Indoor Air Peak ground acceleration with a 10% probability of exceedance in 50 years 1.0-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years Average Well Color Development (AWCD) data based on Community Level Physiological Profiling (CLPP) of soil samples from 120 point locations within limestone cedar glades at Stones River National Battlefield near Murfreesboro, Tennessee Echosounder Points, Rondout Reservoir, 2013 to 2014 Echosounder Points, Pepacton Reservoir, 2015 Shorelines of the Alabama coastal region used in shoreline change analysis Boat-based water-surface elevation surveys along the upper Willamette River, Oregon, in March, 2015 Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (shallow contours shapefile) PaRadonGW.shp - Evaluation of Radon Occurrence in Groundwater from 16 Geologic Units in Pennsylvania, 1986–2015, with Application to Potential Radon Exposure from Groundwater and Indoor Air Cave and Karst Biota Modeling in the Appalachian LCC - Observed troglobiotic fish in 20km grid cells Cave and Karst Biota Modeling in the Appalachian LCC - Predicted troglobiotic crayfish in sampled 20km grid cells Marine Arctic polygon distribution of Shulupaoluk (Lycodes jugoricus) Knipowitsch, 1906 Marine Arctic polygon distribution of Sakhalin Sole (Limanda sakhalinensis) Hubbs, 1915 1.0-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years Peak ground acceleration with a 10% probability of exceedance in 50 years Marine Arctic polygon distribution of Halfbarred Pout (Gymnelus hemifasciatus) Andriashev, 1937 Marine Arctic polygon distribution of Starry Flounder (Platichthys stellatus) (Pallas, 1787) Marine Arctic polygon distribution of Arctic Staghorn Sculpin (Gymnocanthus tricuspis) (Reinhardt, 1830) Climatic controls on the global distribution, abundance, and species richness of mangrove forests