Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey (X) > Types: OGC WFS Layer (X) > Types: Shapefile (X)

Folders: ROOT > ScienceBase Catalog > National Seismic Hazard Model and Seismic Design Maps ( Show direct descendants )

6 results (48ms)   

View Results as: JSON ATOM CSV
This data release documents proposed updates to geologic inputs (faults) for the upcoming 2023 National Seismic Hazard Model (NSHM). This version (1.0) conveys differences between 2014 NSHM fault sources and those recently released in the earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 data release by Hatem et al. (2021). A notable difference between the 2014 and 2023 datasets is that slip rates are provided at points for 2023 instead of generalized along the entire fault section length as in 2014; consequently, slip rates are not provided for fault sections in the draft 2023 dataset. Geospatial data (shapefile, kml and geojson) are provided in this data release with...
thumbnail
A model of the lower seismogenic depth distribution of earthquakes in the western United States was developed to support models for seismic hazard assessment that will be included in the 2023 USGS National Seismic Hazard Model. This data release presents a recalibration using the hypocentral depths of events M>1 from the Advanced National Seismic System Comprehensive Earthquake Catalog from 1980 to 2021. For higher precision and better resolution in the model, the data were supplemented with seismicity from southern California that was relocated by Hauksson and others (2012). Along the San Andreas Fault, the deepest seismogenic depths are located at 23 km around the Cholame segment, whereas the shallowest depths...
thumbnail
Version 2.0 is now available. Please see new data release here: https://doi.org/10.5066/P9AB0TA7. A key input for probabilistic seismic hazard analysis (PSHA) is geologic slip rate data. Yet, no single database exists to house all geologic slip rate data used in these calculations. Here, we compile all geologic slip rates that are reportedly used in U.S. National Seismic Hazard Map (NSHM) releases from 1996, 2002, 2007, 2008, and 2014. Although a new NSHM was released in 2018, no changes were made in geologic slip rate data used. The geologic slip rates are collated from existing NSHM reports and documentation, and no new data are reported herein. The geologic slip rates are coupled with the most up-to-date fault...
thumbnail
A key input for probabilistic seismic hazard analysis (PSHA) is geologic slip rate data. Here, we compile all geologic slip rates that are reportedly used in U.S. National Seismic Hazard Map (NSHM) releases from 1996, 2002, 2007, 2008, and 2014. Although a new NSHM was released in 2018, no changes were made in geologic slip rate data used. The geologic slip rates are collated from existing NSHM reports and documentation, and no new data are reported herein. The geologic slip rates are coupled with the fault geometries used in NSHM2014/2018 calculations. The data are presented spatially as a shapefile (SHP), in keyhole markup language (KML) and geoJSON. A readme file accompanies this dataset explaining details of...
The earthquake catalog was generated in August 2018 using the standard National Seismic Hazard Model methodology (Mueller, 2019) for the central and eastern United States. Pre-existing catalogs were merged, duplicate records were removed, the catalog was declustered, and induced earthquakes were removed. The final catalog contains 6802 records, M2.5–7.8, and extends from 1568 through July 2018.
thumbnail
Global positioning system (GPS) data were compiled and processed to support models for seismic hazard assessment that will be included in the 2023 USGS National Seismic Hazard Model (NSHM). This data release presents the updated GPS velocity field for the western United States. Data processing centers and field networks, seven in total, supported this work, and solutions include both survey and continuous-mode GPS velocity measurements. Processing procedures were followed according to the UCERF3 (Uniform California Earthquake Rupture Forecast version 3) and the 2014 NSHM deformation modeling project. The final velocity field consists of 4,979 horizontal velocity vectors.


    map background search result map search result map Compilation of geologic slip rate constraints used in 1996—2014 U.S. National Seismic Hazard Maps Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 Compilation of geologic slip rate constraints used in 1996—2014 U.S. National Seismic Hazard Models (ver. 2.0, February 2022) Data release for the lower seismogenic depth model of western U.S. earthquakes 2023 NSHM western United States GPS velocities Earthquake catalog (1568 to 2018) for the USGS National Seismic Hazard Model and Nuclear Regulatory Commission Data release for the lower seismogenic depth model of western U.S. earthquakes Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 2023 NSHM western United States GPS velocities Earthquake catalog (1568 to 2018) for the USGS National Seismic Hazard Model and Nuclear Regulatory Commission Compilation of geologic slip rate constraints used in 1996—2014 U.S. National Seismic Hazard Models (ver. 2.0, February 2022) Compilation of geologic slip rate constraints used in 1996—2014 U.S. National Seismic Hazard Maps