Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Alaska CASC ( Show direct descendants )

510 results (13ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Alaska CASC
Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The global mean surface temperature increased 0.85°C during the period 1880 – 2012. Some climate models predict an additional warming of up 2 to 4 ◦ C over the next 100 years for the primary breeding grounds for North American ducks. Such an increase has been predicted to reduce mid - continent breeding duck populations by >70%. Managing continental duck populations in the face of climate change requires understanding how waterfowl have responded to historical spatio - temporal climatic variation. However, such responses to climate may be obscured by how ducks respond to variation in land cover. We estimated effects of climate on settlement patterns of breeding ducks in the Prairie - Parkland Region (PPR), boreal...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2016EF000479/full): Glacier hypsometry provides a first-order approach for assessing a glacier's response to climate forcings. We couple the Randolph Glacier Inventory to a suite of in situ observations and climate model output to examine potential change for the ∼27,000 glaciers in Alaska and northwest Canada through the end of the 21st century. By 2100, based on Representative Concentration Pathways (RCPs) 4.5–8.5 forcings, summer temperatures are predicted to increase between +2.1 and +4.6°C, while solid precipitation (snow) is predicted to decrease by −6 to −11%, despite a +9 to +21% increase in total precipitation. Snow is predicted to undergo a pronounced...
Berry Risk Mapping and Modeling of Native and exotic defoliators in Alaska is a jointly funded project between the Alaska Climate Science Center and the North Pacific Landscape Conservation Cooperative.
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/gcb.12875/abstract): Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH 4) and carbon dioxide (CO 2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large-scale controls of anaerobic CO 2 and CH 4 production and compare the relative importance...
The Klamath Basin in Oregon and California is home to a rich abundance of natural and cultural resources, many of which are vulnerable to present and future climate change. Climate change also threatens traditional ways of life for tribal communities, who have deep connections to the region. This project sought to increase the effectiveness of regional climate change adaptation and planning by (1) developing ways to integrate traditional ecological knowledge (TEK) with western science in decision making, (2) building partnerships between tribal, academic, and government institutions, and (3) increasing future capacity to respond to climate change by engaging tribal youth. Through this project, the Quartz Valley...
Abstract: P-band interferometric synthetic aperture radar (InSAR) data at 5 m resolution from Kahiltna Glacier, the largest glacier in the Alaska Range, Alaska, USA, show pronounced spatial variation in penetration depth, δ P. We obtained δ P by differencing X- and P-band digital elevation models. δ P varied significantly over the glacier, but it was possible to distinguish representative zones. In the accumulation area, δ P decreased with decreasing elevation from 18±3 m in the percolation zone to 10±4 m in the wet snow zone. In the central portion of the ablation area, a location free of debris and crevasses, we identified a zone of very high δ P (34±4 m) which decreased at lower elevations (23±3 m in bare ice...
Abstract (from http://www.sciencedirect.com/science/article/pii/S1873965215000110): The goal of this study was to assess the importance of the 2007 sea ice retreat for hydrologic conditions on the Alaskan North Slope, and how this may have influenced the outbreak of tundra fires in this region. This study concentrates on two years, 2007 and 1996, with different arctic sea ice conditions and tundra fire activity. The year of 2007 is characterized by a low summer sea ice extent (second lowest) and high tundra fire activity, while 1996 had high sea ice extent, and few tundra fires. Atmospheric lateral boundary forcing from the NCEP/NCAR Reanalysis drove the Weather Research and Forecast (WRF) model, along with varying...
thumbnail
These files include historical downscaled estimates of decadal average monthly snow-day fraction ("fs", units = percent probability from 1 – 100) for each month of the decades from 1900-1909 to 2000-2009 at 771 x 771 m spatial resolution. Each file represents a decadal average monthly mean. Version 1.0 was completed in 2015 Version 2.0 was completed in 2018 These snow-day fraction estimates were produced by applying equations relating decadal average monthly temperature to snow-day fraction to downscaled decadal average monthly temperature. Separate equations were used to model the relationship between decadal monthly average temperature and the fraction of wet days with snow for seven geographic regions in the...
thumbnail
These files include climatological summaries of downscaled historical and projected decadal average monthly snowfall equivalent ("SWE", in millimeters), the ratio of snowfall equivalent to precipitation, and future change in snowfall for October-March at 771-meter spatial resolution across the state of Alaska. **Derived snow variables and summaries. Data are for summary October to March Alaska climatologies for:** 1) historical and future snowfall equivalent ("SWE"), produced by multiplying snow-day fraction by decadal average monthly precipitation and summing over 6 months from October to March to estimate the total SWE on April 1. 2) historical and future ratio of SWE to precipitation ("SFEtoP"), SFEtoP is the...