Skip to main content
Advanced Search

Filters: Extensions: Shapefile (X) > Types: Shapefile (X) > partyWithName: U.S. Geological Survey - ScienceBase (X) > partyWithName: U.S. Geological Survey (X)

1,012 results (17ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
This dataset includes polygons that describe areas of rock outcrop in the area of the Stillwater Complex, Montana. The Stillwater Complex is an Archean, ultramafic to mafic layered intrusion exposed in the Beartooth Mountains in south-central Montana. This igneous intrusion contains magmatic mineralization that is variably enriched in strategic and critical commodities such as chromium, nickel, and the platinum-group elements (PGE). Polygons representing rock outcrops were digitized in a Geographic Information System (GIS) using georeferenced maps and orthophoto imagery from published reports and field mapping sheets. This is a compilation of both legacy data and outcrops from recent field mapping. This dataset...
thumbnail
This data release provides multi-element data for drill core samples from the Mesoproterozoic Nonesuch Formation and Copper Harbor Conglomerate at the Copperwood copper deposit, Michigan, USA. Gold, platinum, and palladium data were collected by fire assay; copper and silver were collected by assay; and other elements were collected by inductively coupled plasma-optical emission spectrometry (ICP-OES) or inductively coupled plasma-mass spectrometry (ICP-MS) following a digestion that used hydrochloric, nitric, perchloric and hydrofluoric acids. The Copperwood copper deposit is a sediment-hosted stratiform copper deposit in the Presque Isle Syncline of the upper peninsula of Michigan. The deposit has a 2018 mineral...
thumbnail
Shallow subsurface electrical conductivity was mapped at Wigeon National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 25 line-kilometers (km) of data were acquired over an area of approximately 2 square-kilometer. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey path;...
thumbnail
Shallow subsurface electrical conductivity was mapped at Westgard National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 21 line-kilometers (km) of data were acquired over an area of approximately .5 square-kilometers. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey...
thumbnail
Shallow subsurface electrical conductivity was mapped at Northeast National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 14 line-kilometers (km) of data were acquired over an area of approximately 2 square-kilometer. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey...
thumbnail
Shallow subsurface electrical conductivity was mapped at Jerde National Wildlife Refuge (NWR) in northeast Montana using the DUALEM421 electromagnetic sensor (Dualem, Inc., ON, Canada) in the winter of 2017. Data were acquired by towing the DUALEM421 sensor on a sled behind an all-terrain vehicle or snow machine, with the sensor at a nominal height of 0.3 meters (m) above ground surface. Approximately 10 line-kilometers (km) of data were acquired over an area of approximately 1 square-kilometer. Data were manually edited to remove sensor dropouts, lag corrected for apparent offsets between recorded GPS location and data locations for each coil pair, and averaged to a sounding distance of 1m along the survey path;...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS), Colorado Division of Reclamation, Mining and Safety (DRMS), and Coal Creek Watershed Coalition (CCWC) working independently, have intermittently collected samples of surface- and groundwater and springs around Mount Emmons, near Crested Butte, Colorado. This data release is a compilation of the comprehensive inorganic chemical analyses conducted as a result of that sampling. The earliest samples were collected in the summer of 1997, and subsequent sampling has continued through 2019. Water samples collected in the Elk Creek basin, sample identifiers starting with EC, have been previously published in three U.S. Geological Survey reports; Verplanck and others, 2007, Manning and...
Categories: Data, Data Release - Revised; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: CWCC, Coal Creek, Coal Creek Watershed Coalition, Colorado, Colorado Division of Reclamation, Mining and Safety, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMGP, Cedar Island, All tags...
thumbnail
Observations of irrigated agricultural land within the Ranegras Plain Groundwater Basin in Arizona. Crops were verified in situ twice in 2021, first on May 19th and again on September 1st; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2021 and supplemented with Landsat and Sentinel2 imagery collections accessed via the Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The Southern San Andreas fault (SSAF) poses one of the largest seismic risks in California. However, structural properties around Coachella Valley remain enigmatic. In 2019, we collected magnetotelluric soundings (MT) to help inform depth-dependent fault zone geometry, fluid content and porosity. This project was led by the Institute of Geophysics and Planetary Physics at the University of California San Diego in partnership with U.S. Geological Survey and funded in large part by the Southern California Earthquake Center (SCEC). The MT data were collected using Zonge International 32-bit ZEN data loggers with ANT-4 magnetic induction coils and Borin Ag-AgCl electrodes with 50 m dipoles. The ZEN was programmed to...
thumbnail
The U.S. Geological Survey (USGS) Geology, Geophysics and Geochemistry Science Center (GGGSC) collaborated with the USGS Science Analytics and Synthesis (SAS) team to preserve and release a subset of magnetotelluric data from the San Andreas Fault in Loma Prieta, California. The San Andreas Fault data were collected by the Branch of Geophysics, a precursor to the now GGGSC, between 1989 and 1994. The magnetotelluric data selected for this preservation project were collected in 1989 and 1990 using USGS portable truck mounted systems that measure the distribution of electrical conductivity beneath the surface of the earth. Truck mounted systems of this era output data to 3.5” discs, from which data were recovered...
thumbnail
Observations of irrigated agricultural land within the Harquahala Irrigation Non-Expansion Area Groundwater Basin in Arizona. Crops were verified in situ three times in 2021, first on March 3rd, then on May 19th, and finally on September 2nd; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2021 and supplemented with Landsat and Sentinel2 imagery collections accessed via the Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified...
thumbnail
This data release contains coastal wetland synthesis products for the Atlantic-facing Eastern Shore of Virginia (the data release for the Chesapeake Bay-facing portion of the Eastern Shore of Virginia is found here: https://doi.org/10.5066/P997EJYB). Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with...
thumbnail
The U.S. Geological Survey, in cooperation with the National Park Service, Yellowstone Center for Resources, as part of work for the Yellowstone Volcano Observatory, has compiled a shapefile map of thermal areas and thermal water bodies in Yellowstone National Park. A thermal area is a continuous, or nearly continuous, geologic unit that contains one or more thermal features (e.g., hot springs, mud pots, or fumaroles); hydrothermally altered rocks and/or hydrothermal mineral deposits; heated ground and/or geothermal gas emissions; and is generally barren of vegetation or has stressed / dying vegetation. There are more than 10,000 thermal features in Yellowstone, most of which are clustered together into about 120...
thumbnail
This dataset contains all the layers associated with U.S. Geological Survey (USGS) Great Lakes Coastal Wetland Restoration Assessment (GLCWRA) initiative for the Connecting River Systems Restoration Assessment (CRSRA) which aims to identify and rank coastal areas with the greatest potential for wetland habitat restoration. Each layer has a unique contribution to the identification of restorable wetlands. The 7 parameters (Parameter 0: Mask, Parameter 1: Hydroperiod, Parameter 2: Wetland Soils, Parameter 3: Flowlines, Parameter 4: Conservation and Recreation Lands, Parameter 5: Impervious Surfaces, and Parameter 6: Land Use) and Index Composite directly correlate to areas that are recommended for restoration. The...


map background search result map search result map Geochemical analyses of surface water, groundwater and springs surrounding Mount Emmons near Crested Butte, Colorado (ver. 2.0, September 2020) DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cedar Island, VA, 2012 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cedar Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Cedar Island, VA, 2013–2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2014 Stillwater Complex Rock Outcrop Database Multi-element geochemical analyses of selected samples from the Mesoproterozoic Nonesuch Formation and Copper Harbor Conglomerate at the Copperwood copper deposit, Michigan, USA Jerde NWR, Montana, 2017 Northeast NWR, Montana, 2017 Westgard NWR, Montana, 2017 Wigeon NWR, Montana, 2017 Magnetotelluric Data from the San Andreas Fault, Loma Prieta CA, 1989-1990 Magnetotelluric data across the Southern San Andreas Fault Zone, California Estimated crop irrigation water use withdrawals in Ranegras Plain Groundwater Basin, Arizona for 2021 Estimated crop irrigation water use withdrawals in Harquahala Irrigation Non-Expansion Area Groundwater Basin, Arizona for 2021 Elevation of marsh units in Eastern Shore of Virginia salt marshes Baseline for the North Carolina coastal region from Cape Fear to the South Carolina border (NCwest) Baseline for the North Carolina coastal region from Cape Lookout to Cape Fear (NCsouth) Connecting River Systems Restoration Assessment Composite Model Map of Yellowstone’s Thermal Areas: Updated 2023-12-31 Westgard NWR, Montana, 2017 Jerde NWR, Montana, 2017 Northeast NWR, Montana, 2017 Wigeon NWR, Montana, 2017 Geochemical analyses of surface water, groundwater and springs surrounding Mount Emmons near Crested Butte, Colorado (ver. 2.0, September 2020) Magnetotelluric data across the Southern San Andreas Fault Zone, California Magnetotelluric Data from the San Andreas Fault, Loma Prieta CA, 1989-1990 Estimated crop irrigation water use withdrawals in Ranegras Plain Groundwater Basin, Arizona for 2021 Stillwater Complex Rock Outcrop Database shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2014 Estimated crop irrigation water use withdrawals in Harquahala Irrigation Non-Expansion Area Groundwater Basin, Arizona for 2021 Elevation of marsh units in Eastern Shore of Virginia salt marshes Connecting River Systems Restoration Assessment Composite Model Map of Yellowstone’s Thermal Areas: Updated 2023-12-31 Baseline for the North Carolina coastal region from Cape Lookout to Cape Fear (NCsouth)