Skip to main content
Advanced Search

Filters: Categories: Data (X) > Types: OGC WFS Layer (X)

Folders: ROOT > ScienceBase Catalog > Woods Hole Coastal and Marine Science Center ( Show direct descendants )

34 results (11ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management compiled Massachusetts vector shorelines into an updated dataset for the Office’s Shoreline Change Project. The Shoreline Change Project started in 1989 to identify erosion-prone areas of the Massachusetts coast by compiling a database of historical shoreline positions. Trends of shoreline position over long- and short-term timescales provide information to landowners, managers, and potential buyers about possible future changes to costal resources and infrastructure. This updated dataset strengthens the understanding of shoreline position change in Massachusetts. It includes U.S. Geological Survey vector shorelines...
thumbnail
Coastal wetlands are major global carbon sinks, however, they are heterogeneous and dynamic ecosystems. To characterize spatial and temporal variability in a New England salt marsh, static chamber measurements of greenhouse gas (GHG) fluxes were compared among major plant-defined zones (high marsh dominated by Distichlis spicata and a zone of invasive Phragmites australis) during 2013 and 2014 growing seasons. Two sediment cores were collected in 2015 from the Phragmites zone to support previously reported core collections from the high marsh sites (Gonneea and others 2018). Collected cores were up to 70 cm in length with dry bulk density ranges from 0.04 to 0.33 grams per cubic centimeter and carbon content 22.4%...
thumbnail
Unvegetated to vegetated marsh ratio (UVVR) in the Fire Island National Seashore and Central Great South Bay salt marsh complex, is computed based on conceptual marsh units defined by Defne and Ganju (2018). UVVR was calculated based on U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) 1-meter resolution imagery. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Fire Island National Seashore and Central Great South Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate...
thumbnail
These data are a qualitatively derived interpretive polygon shapefile defining surficial sediment type and distribution, and geomorphology, for nearly 1,400 square kilometers of sea floor on the inner-continental shelf from Fenwick Island, Maryland to Fisherman’s Island, Virginia, USA. These data are classified according to Barnhardt and others (1998) bottom-type classification system, which was modified to highlight changes in secondary sediment-types such as mud and gravel across this primarily sandy shelf. Most of the geophysical and sample data used to create this interpretive layer were collected as part of the Linking Coastal Processes and Vulnerability: Assateague Island Regional Study project (GS2-2C), supported...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island National Seashore, Assawoman Island, Atlantic Ocean, Backscatter, All tags...
thumbnail
The San Juan Bay Estuary, Puerto Rico, contains mangrove forests that store significant amounts of organic carbon in soils and biomass. There is a strong urbanization gradient across the estuary, from the highly urbanized and clogged Caño Martin Peña in the western part of the estuary, a series of lagoons in the center of the estuary, and a tropical forest reserve (Piñones) in the easternmost part with limited urbanization. We collected sediment cores to determine carbon burial rates and vertical sediment accretion from five sites in the San Juan Bay Estuary. Cores were radiometrically-dated using lead-210 and the Plum age model. Sites had soil C burial rates ranging from 50 grams per meter squared per year (g m-2...
thumbnail
This product provides spatial variations in wave thrust along shorelines in Massachusetts and Rhode Island. Natural features of relevance along the State coast are salt marshes. In recent times, marshes have been eroding primarily through lateral erosion. Wave thrust represents a metric of wave attack acting on marsh edges. The wave thrust is calculated as the vertical integral of the dynamic pressure of waves. This product uses a consistent methodology with sufficient spatial resolution to include the distinct features of each marsh system. Waves under different climatological wind forcing conditions were simulated using the coupled ADCIRC/SWAN model system. The estuarine and bay areas are resolved with horizontal...
thumbnail
The lifespans of salt marshes in Atlantic-facing Eastern Shore of Virginia are calculated based on estimated sediment supply and sea-level rise (SLR) predictions, following the methodology of Ganju and others (2020). The salt marsh delineations are from Ackerman and others (2023). The SLR predictions are local estimates corresponding to increases of 0.3, 0.5 and 1.0 meter in global mean sea level (GMSL) by 2100, as projected by Sweet and others (2022). This work has been a part of the USGS’s effort to expand the national assessment of coastal change hazards and forecast products to coastal wetlands. The aim is to equip federal, state and local managers with tools to estimate the vulnerability and ecosystem service...
thumbnail
This U.S. Geological Survey data release provides data on spatial variations in tidal datums, tidal range, and nuisance flooding in Chesapeake Bay and Delaware Bay. Tidal datums are standard elevations that are defined based on average tidal water levels. Datums are used as references to measure local water levels and to delineate regions in coastal environments. Nuisance flooding refers to the sporadic inundation of low-lying coastal areas by the maximum tidal water levels during spring tides, especially perigean spring tides (also known as king tides). Nuisance flooding is independent of storm event flooding, and it represents a cumulative or chronic hazard. The data were obtained by following a consistent methodology...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) Unvegetated to vegetated marsh ratio (UVVR) in the Cape Cod National Seashore (CACO) salt marsh complex and approximal wetlands is computed based on conceptual marsh units defined by Defne and Ganju (2019). UVVR was calculated based on U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) 1-meter resolution imagery. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) The salt marsh complex of Cape Cod National Seashore (CACO), Massachusetts, USA and approximal wetlands were delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy Science Plan,...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) Elevation distribution in the Cape Cod National Seashore (CACO) salt marsh complex and approximal wetlands is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2019). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED), where data gaps exist. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands....
thumbnail
The salt marsh complex of Assateague Island National Seashore (ASIS) and Chincoteague Bay was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Assateague Island National Seashore and Chincoteague...
thumbnail
Beaches are a dynamic interface between water and land and are frequently subjected to a range of natural hazards, which include flooding, storm effects, and coastal erosion. The U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards across the Nation. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is one of the most commonly monitored indicators of environmental change and it is an easily understood feature marking the location of a beach through time. A principal component of the USGS national assessment of shoreline change has been to develop...
thumbnail
The salt marsh complex of Fire Island National Seashore (FIIS) and central Great South Bay was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Fire Island National Seashore and central Great South...
thumbnail
Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation of mean tidal range (i.e. Mean Range of Tides, MN) in the Fire Island National Seashore and Central Great South Bay salt marsh complex, based on conceptual marsh units defined by Defne and Ganju (2018). MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) database ( http://vdatum.noaa.gov/ ). Through scientific...
thumbnail
Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation of mean tidal range (i.e. Mean Range of Tides, MN) in the Assateague Island National Seashore and Chincoteague Bay based on conceptual marsh units defined by Defne and Ganju (2018). MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) database ( http://vdatum.noaa.gov/ ). Through scientific efforts initiated...
thumbnail
Elevation distribution in the Assateague Island National Seashore (ASIS) salt marsh complex and Chincoteague Bay is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2018). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Assateague Island National Seashore and Chincoteague Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem...
thumbnail
The Massachusetts Office of Coastal Zone Management (CZM) launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the Massachusetts coast. Seventy-six maps were produced in 1997 depicting a statistical analysis of shoreline change on ocean-facing shorelines from the mid-1800s to 1978 using multiple data sources. In 2001, a 1994 shoreline was added. More recently, in cooperation with CZM, the U.S. Geological Survey (USGS) delineated a new shoreline for Massachusetts using color aerial ortho-imagery from 2008 to 2009 and topographic lidar data collected in 2007. This update included a marsh shoreline, which was defined to be the tonal difference between low- and high-marsh seen in ortho-photos....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Bourne, CMGP, Chatham, Coastal and Marine Geology Program, Duxbury, All tags...
thumbnail
This product provides spatial variations in wave thrust along shorelines in the Chesapeake Bay. Natural features of relevance along the Bay coast are salt marshes. In recent times, marshes have been eroding primarily through lateral erosion. Wave thrust represents a metric of wave attack acting on marsh edges. The wave thrust is calculated as the vertical integral of the dynamic pressure of waves. This product uses a consistent methodology with sufficient spatial resolution to include the distinct features of each marsh system. Waves under different climatological wind forcing conditions were simulated using the coupled ADCIRC/SWAN model system. The estuarine and bay areas are resolved with horizontal resolutions...
thumbnail
Simulation of hydrodynamic circulation in Barnegat Bay for the period from 03-01-2012 to 10-01-2012. The bathymetry of the model was based on the National Ocean Service Hydrographic Survey data, and updated with recent bathymetric measurements. At the landward end (western boundary), we specified point sources of freshwater in accordance with USGS streamflow measurements at 7 gauges, and a radiation boundary condition that allows tidal energy to propagate landward. On the seaward end, tidal water level and velocity amplitudes from the ADCIRC tidal database for the North Atlantic were applied. These were supplemented by the subtidal water level and subtidal barotropic velocity from the ESPreSSO model, which covers...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: CMG_Portal, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, Earth Science > Oceans > Salinity/Density > Salinity, Earth Science > Oceans > Sea Surface Topography > Sea Surface Height, All tags...


map background search result map search result map National Assessment of Shoreline Change: A GIS compilation of updated vector shorelines and associated shoreline change data for the north coast of Alaska, U.S. Canadian border to Icy Cape Sediment Texture and Geomorphology of the Sea Floor from Fenwick Island, Maryland to Fisherman's Island, Virginia USGS Barnegat Bay hydrodynamic model for March-September 2012 Marsh shorelines of the Massachusetts coast from 2013-14 topographic lidar data Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Elevation of marsh units in Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Mean tidal range in marsh units of Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Conceptual marsh units for Fire Island National Seashore and central Great South Bay salt marsh complex, New York Unvegetated to vegetated marsh ratio in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Mean tidal range in marsh units of Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Conceptual marsh units for Cape Cod National Seashore salt marsh complex, Massachusetts Unvegetated to vegetated marsh ratio in Cape Cod National Seashore salt marsh complex, Massachusetts Elevation of marsh units in Cape Cod National Seashore salt marsh complex, Massachusetts Collection, analysis, and age-dating of sediment cores from mangrove wetlands in San Juan Bay Estuary, Puerto Rico, 2016 Wave thrust values at point locations along the shorelines of Chesapeake Bay, Maryland and Virginia Historical shoreline positions for the coast of MA, from 1844 - 2014 Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island Tidal Datums, Tidal Range, and Nuisance Flooding Levels for Chesapeake Bay and Delaware Bay Static chamber gas fluxes and carbon and nitrogen isotope content of age-dated sediment cores from a Phragmites wetland in Sage Lot Pond, Massachusetts, 2013-2015 Lifespan of marsh units in Eastern Shore of Virginia salt marshes Static chamber gas fluxes and carbon and nitrogen isotope content of age-dated sediment cores from a Phragmites wetland in Sage Lot Pond, Massachusetts, 2013-2015 Collection, analysis, and age-dating of sediment cores from mangrove wetlands in San Juan Bay Estuary, Puerto Rico, 2016 Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Elevation of marsh units in Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia Mean tidal range in marsh units of Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia USGS Barnegat Bay hydrodynamic model for March-September 2012 Lifespan of marsh units in Eastern Shore of Virginia salt marshes Sediment Texture and Geomorphology of the Sea Floor from Fenwick Island, Maryland to Fisherman's Island, Virginia Marsh shorelines of the Massachusetts coast from 2013-14 topographic lidar data Historical shoreline positions for the coast of MA, from 1844 - 2014 Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island Wave thrust values at point locations along the shorelines of Chesapeake Bay, Maryland and Virginia Tidal Datums, Tidal Range, and Nuisance Flooding Levels for Chesapeake Bay and Delaware Bay National Assessment of Shoreline Change: A GIS compilation of updated vector shorelines and associated shoreline change data for the north coast of Alaska, U.S. Canadian border to Icy Cape